Primitive of x over x squared plus a squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {x^2 + a^2} = \frac 1 2 \map \ln {x^2 + a^2} + C$
where $a$ is a non-zero constant.
Corollary
- $\ds \int \frac {x \rd x} {a^2 + b^2 x^2} = \frac 1 {2 b^2} \map \ln {a^2 + b^2 x^2} + C$
Proof 1
\(\ds u\) | \(=\) | \(\ds x^2 + a^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds 2 x\) | Power Rule for Derivatives and Derivative of Constant | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x \rd x} {x^2 + a^2}\) | \(=\) | \(\ds \frac 1 2 \ln \size {x^2 + a^2} + C\) | Primitive of Function under its Derivative | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \, \map \ln {x^2 + a^2} + C\) | Absolute Value of Even Power |
$\blacksquare$
Proof 2
From Primitive of Power of x less one over Power of x plus Power of a:
- $\ds \int \frac {x^{n - 1} \rd x} {x^n + a^n} = \frac 1 n \ln \size {x^n + a^n} + C$
So:
\(\ds \int \frac {x \rd x} {x^2 + a^2}\) | \(=\) | \(\ds \frac 1 2 \ln \size {x^2 + a^2} + C\) | Primitive of $\dfrac {x^{n - 1} } {\paren {x^n + a^n} }$ with $n = 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \, \map \ln {x^2 + a^2} + C\) | Absolute Value of Even Power |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.126$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.2.$