Primitive of Hyperbolic Cosecant of a x over x
Jump to navigation
Jump to search
Theorem
\(\ds \int \frac {\csch a x \rd x} x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} \paren {a x}^{2 k - 1} } {\paren {2 k - 1}\paren {2 k}!} + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {a x} - \frac {a x} 6 + \frac {7 \paren {a x}^3} {1080} + \cdots + C\) |
where $B_{2 k}$ denotes the $2 k$th Bernoulli number.
Proof
\(\ds \csch x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} x^{2 k - 1} } {\paren {2 k}!}\) | Power Series Expansion for Hyperbolic Cosecant Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\csch a x} x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} \paren {a x}^{2 k - 1} } {x \paren {2 k}!}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} a^{2 k - 1} x^{2 k - 2} } {\paren {2 k}!}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\csch a x \rd x} x\) | \(=\) | \(\ds \int \paren {\sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} a^{2 k - 1} x^{2 k - 2} } {\paren {2 k}!} } \rd x\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \int \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} a^{2 k - 1} x^{2 k - 2} } {\paren {2 k}!} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} a^{2 k - 1} x^{2 k - 1} } {\paren {2 k - 1}\paren {2 k}!}\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 k - 1} } B_{2 k} \paren {a x}^{2 k - 1} } {\paren {2 k - 1}\paren {2 k}!}\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\csch a x$: $14.643$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(33)$ Integrals Involving $\csch a x$: $17.33.6.$