Primitive of Hyperbolic Secant of a x over x
Jump to navigation
Jump to search
Theorem
\(\ds \int \frac {\sech a x \rd x} x\) | \(=\) | \(\ds \ln \size x + \sum_{k \mathop \ge 1} \frac {E_{2 k} \paren {a x}^{2 k} } {\paren {2 k} \paren {2 k}!} + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size x - \frac {\paren {a x}^2} 4 + \frac {\paren {a x}^4} {96} - \frac {\paren {a x}^6} {4320} + \cdots + C\) |
where $E_k$ denotes the $k$th Euler number.
Proof
\(\ds \sech x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {E_{2 k} x^{2 k} } {\paren {2 k}!}\) | Power Series Expansion for Hyperbolic Secant Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\sech a x} x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {E_{2 k} \paren {a x}^{2 k} } {x \paren {2 k}!}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {E_{2 k} a^{2 k} x^{2 k - 1} } {\paren {2 k}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x + \sum_{n \mathop = 1}^\infty \frac {E_{2 k} a^{2 k} x^{2 k - 1} } {\paren {2 k}!}\) | extracting the first term, which needs to be handled separately | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\sech a x \rd x} x\) | \(=\) | \(\ds \int \paren {\frac 1 x + \sum_{n \mathop = 1}^\infty \frac {E_{2 k} a^{2 k} x^{2 k - 1} } {\paren {2 k}!} } \rd x\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac 1 x \rd x + \sum_{k \mathop = 1}^\infty \int \frac {E_{2 k} a^{2 k} x^{2 k - 1} } {\paren {2 k}!} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size x + \sum_{k \mathop = 1}^\infty \int \frac {E_{2 k} a^{2 k} x^{2 k - 1} } {\paren {2 k}!} \rd x\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size x + \sum_{k \mathop = 1}^\infty \frac {E_{2 k} a^{2 k} x^{2 k} } {\paren {2 k} \paren {2 k}!}\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size x + \sum_{k \mathop = 1}^\infty \frac {E_{2 k} \paren {a x}^{2 k} } {\paren {2 k} \paren {2 k}!}\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sech a x$: $14.633$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(32)$ Integrals Involving $\sech a x$: $17.32.6.$