Primitive of Reciprocal of x cubed by x squared plus a squared squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x^3 \paren {x^2 + a^2}^2} = -\frac 1 {2 a^4 x^2} - \frac 1 {2 a^4 \paren {x^2 + a^2} } - \frac 1 {a^6} \map \ln {\frac {x^2} {x^2 + a^2} } + C$
Proof
Let:
\(\ds \int \frac {\d x} {x^3 \paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \paren {-\frac 2 {a^6 x} + \frac 1 {a^4 x^3} + \frac {2 x} {a^6 \paren {x^2 + a^2} } + \frac x {a^4 \paren {x^2 + a^2}^2} } \rd x\) | Partial Fraction Expansion | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {a^6} \int \frac {\d x} x + \frac 1 {a^4} \int \frac {\d x} {x^3} + \frac 2 {a^6} \int \frac {x \rd x} {x^2 + a^2} + \frac 1 {a^4} \int \frac {x \rd x} {\paren {x^2 + a^2}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {a^6} \ln x + \frac 1 {a^4} \int \frac {\d x} {x^3} + \frac 2 {a^6} \int \frac {x \rd x} {x^2 + a^2} + \frac 1 {a^4} \int \frac {x \rd x} {\paren {x^2 + a^2}^2} + C\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {a^6} \ln x - \frac 1 {2 a^4 x^2} + \frac 2 {a^6} \int \frac {x \rd x} {x^2 + a^2} + \frac 1 {a^4} \int \frac {x \rd x} {\paren {x^2 + a^2}^2} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {a^6} \ln x - \frac 1 {2 a^4 x^2} + \frac 2 {a^6} \paren {\frac 1 2 \map \ln {x^2 + a^2} } + \frac 1 {a^4} \int \frac {x \rd x} {\paren {x^2 + a^2}^2} + C\) | Primitive of $\dfrac x {x^2 + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 2 {a^6} \ln x - \frac 1 {2 a^4 x^2} + \frac 1 {a^6} \map \ln {x^2 + a^2} + \frac 1 {a^4} \paren {-\frac 1 {2 \paren {x^2 + a^2} } } + C\) | Primitive of $\dfrac x {\paren {x^2 + a^2}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {2 a^4 x^2} - \frac 1 {2 a^4 \paren {x^2 + a^2} } - \frac 1 {a^6} \map \ln {\frac {x^2} {x^2 + a^2} } + C\) | simplification |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.138$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.14.$