Primitive of x over a x + b squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\paren {a x + b}^2} = \frac b {a^2 \paren {a x + b} } + \frac 1 {a^2} \ln \size {a x + b} + C$
Proof 1
Put $u = a x + b$.
Then:
\(\ds x\) | \(=\) | \(\ds \frac {u - b} a\) | ||||||||||||
\(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 a\) |
Then:
\(\ds \int \frac {x \rd x} {\paren {a x + b}^2}\) | \(=\) | \(\ds \int \frac 1 a \frac {u - b} {a u^2} \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \int \frac {\d u} u - \frac b {a^2} \int \frac {\d u} {u^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \ln \size u + C - \frac b {a^2} \int \frac {\d u} u\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \ln \size u - \frac b {a^2} \frac {-1} u + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac b {a^2 \paren {a x + b} } + \frac 1 {a^2} \ln \size {a x + b} + C\) | substituting for $u$ and rearranging |
$\blacksquare$
Proof 2
\(\ds \int \frac {x \rd x} {\paren {a x + b}^2}\) | \(=\) | \(\ds \int \frac {a x \rd x} {a \paren {a x + b}^2}\) | multiplying top and bottom by $a$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\paren {a x + b - b} \rd x} {a \paren {a x + b}^2}\) | adding and subtracting $b$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {\paren {a x + b} \rd x} {\paren {a x + b}^2} - \frac b a \int \frac {\d x} {\paren {a x + b}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {\d x} {a x + b} - \frac b a \int \frac {\d x} {\paren {a x + b}^2}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \paren {\frac 1 a \ln \size {a x + b} } - \frac b a \int \frac {\d x} {\paren {a x + b}^2} + C\) | Primitive of Reciprocal of $\dfrac 1 {a x + b}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \paren {\frac 1 a \ln \size {a x + b} } - \frac b a \paren {-\frac 1 {a \paren {a x + b} } } + C\) | Primitive of Reciprocal of $\dfrac 1 {\paren {a x + b}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac b {a^2 \paren {a x + b} } + \frac 1 {a^2} \ln \size {a x + b} + C\) | simplification |
$\blacksquare$
Also presented as
This result is also seen presented in the form:
- $\ds \int \frac {x \rd x} {\paren {a x + b}^2} = \frac 1 {a^2} \paren {\ln \size {a x + b} + \frac b {a x + b} } + C$
Also see
- Primitive of $x$ by $\paren {a x + b}^n$ for general $n$
- Primitive of $x$ over $a x + b$ for the case when $n = -1$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.67$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(1)$ Integrals Involving $a x + b$: $17.1.7.$