Primitive of Reciprocal of p plus q by Cosine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\rd x} {p + q \cos a x} = \begin {cases}
\dfrac 2 {a \sqrt {p^2 - q^2} } \map \arctan {\sqrt {\dfrac {p - q} {p + q} } \tan \dfrac {a x} 2} + C & : p^2 > q^2 \\ \dfrac 1 {a \sqrt {q^2 - p^2} } \ln \size {\dfrac {\tan \dfrac {a x} 2 + \sqrt {\dfrac {q + p} {q - p} } } {\tan \dfrac {a x} 2 - \sqrt {\dfrac {q + p} {q - p} } } } + C & : p^2 < q^2 \\ \end {cases}$ for $p \ne q$.
Proof
\(\ds \int \frac {\d x} {p + q \cos a x}\) | \(=\) | \(\ds \frac 2 {a \paren {p - q} } \int \frac {\d u} {u^2 + \dfrac {p + q} {p - q} }\) | Weierstrass Substitution: $u = \tan \dfrac {a x} 2$ |
Let $p^2 > q^2$.
Then, by Sign of Quotient of Factors of Difference of Squares:
- $\dfrac {p + q} {p - q} > 0$
Thus, let $\dfrac {p + q} {p - q} = d^2$.
Then:
\(\ds \int \frac {\d x} {p + q \cos a x}\) | \(=\) | \(\ds \frac 2 {a \paren {p - q} } \int \frac {\d u} {u^2 + d^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \paren {p - q} } \frac 1 d \arctan \frac u d + C\) | Primitive of $\dfrac 1 {x^2 + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \paren {p - q} } \frac 1 {\sqrt {\dfrac {p + q} {p - q} } } \map \arctan {\frac {\tan \dfrac {a x} 2} {\sqrt {\dfrac {p + q} {p - q} } } } + C\) | substituting for $u$ and $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt {p^2 - q^2} } \map \arctan {\sqrt {\frac {p - q} {p + q} } \tan \dfrac {a x} 2} + C\) | simplifying |
$\Box$
Now let $p^2 < q^2$.
Then, by Sign of Quotient of Factors of Difference of Squares:
- $\dfrac {p + q} {p - q} < 0$
Thus, let:
- $-\dfrac {p + q} {p - q} = d^2$
or:
- $\dfrac {q + p} {q - p} = d^2$
Then:
\(\ds \int \frac {\d x} {p + q \cos a x}\) | \(=\) | \(\ds \frac 2 {a \paren {p - q} } \int \frac {\d u} {u^2 - d^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \paren {p - q} } \frac 1 {2 d} \ln \size {\frac {u - d} {u + d} } + C\) | Primitive of $\dfrac 1 {x^2 - a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a \paren {p - q} } \frac 1 {\sqrt {\dfrac {q + p} {q - p} } } \ln \size {\frac {\tan \dfrac {a x} 2 - \sqrt {\dfrac {q + p} {q - p} } } {\tan \dfrac {a x} 2 + \sqrt {\dfrac {q + p} {q - p} } } } + C\) | substituting for $u$ and $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a \sqrt {q^2 - p^2} } \ln \size {\frac {\tan \dfrac {a x} 2 - \sqrt {\dfrac {q + p} {q - p} } } {\tan \dfrac {a x} 2 + \sqrt {\dfrac {q + p} {q - p} } } } + C\) | simplifying |
$\blacksquare$
Examples
Primitive of $\dfrac 1 {5 + 3 \cos x}$
- $\ds \int \dfrac {\d x} {5 + 3 \cos x} = \dfrac 1 2 \map \arctan {\dfrac 1 2 \tan \dfrac x 2} + C$
Also presented as
$p^2 < q^2$: Also presented as
The result for $p^2 < q^2$ is also seen presented in the form:
- $\ds \int \frac {\d x} {p + q \cos a x} = \frac 1 {a \sqrt {q^2 - p^2} } \ln \size {\dfrac {q + p \cos a x + \sqrt {q^2 - p^2} \sin a x} {p + q \cos a x} } + C$
Also see
- For $p = q$: Primitive of $\dfrac 1 {1 + \cos a x}$
- For $p = -q$: Primitive of $\dfrac 1 {1 - \cos a x}$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cos a x$: $14.390$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $74$.