Primitive of x cubed over x squared plus a squared squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x^3 \rd x} {\paren {x^2 + a^2}^2} = \frac {a^2} {2 \paren {x^2 + a^2} } + \frac 1 2 \map \ln {x^2 + a^2} + C$
Proof 1
Let:
\(\ds z\) | \(=\) | \(\ds x^2 + a^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d z} {\d x}\) | \(=\) | \(\ds 2 x\) | Derivative of Power | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x^3 \rd x} {\paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \frac {\paren {z - a^2} } {z^2} \frac {\d z} 2\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int \frac {\d z} z - \frac {a^2} 2 \int \frac {\d z} {z^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int \frac {\d z} z + \frac {a^2} {2 z} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \ln z + \frac {a^2} {2 z} + C\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2} {2 \paren {x^2 + a^2} } + \frac 1 2 \map \ln {x^2 + a^2} + C\) | substituting for $z$ |
$\blacksquare$
Proof 2
\(\ds \int \frac {x^3 \rd x} {\paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \frac {x \paren {x^2 + a^2 - a^2} } {\paren {x^2 + a^2}^2} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {x \paren {x^2 + a^2} } {\paren {x^2 + a^2}^2} \rd x - a^2 \int \frac {x \rd x} {\paren {x^2 + a^2}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {x \rd x} {x^2 + a^2} - a^2 \int \frac {x \rd x} {\paren {x^2 + a^2}^2}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \map \ln {x^2 + a^2} - a^2 \int \frac {x \rd x} {\paren {x^2 + a^2}^2} + C\) | Primitive of $\dfrac x {x^2 + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \map \ln {x^2 + a^2} - a^2 \paren {\frac {-1} {2 \paren {x^2 - a^2} } } + C\) | Primitive of $\dfrac x {\paren {x^2 + a^2}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2} {2 \paren {x^2 + a^2} } + \frac 1 2 \map \ln {x^2 + a^2} + C\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.135$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.11.$