Primitive of x squared over x squared plus a squared squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x^2 \rd x} {\paren {x^2 + a^2}^2} = \frac {-x} {2 \paren {x^2 + a^2} } + \frac 1 {2 a} \arctan \frac x a + C$
Proof 1
Let:
\(\ds x\) | \(=\) | \(\ds a \tan \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d \theta}\) | \(=\) | \(\ds a \sec^2 \theta\) | Derivative of Tangent Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x^2 \rd x} {\paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \frac {a^2 \tan^2 \theta a \sec^2 \theta} {\paren {a^2 \tan^2 \theta + a^2}^2} \rd \theta\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {a^3 \tan^2 \theta \sec^2 \theta} {a^4 \sec^4 \theta} \rd \theta\) | Difference of Squares of Secant and Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {\tan^2 \theta} {\sec^2 \theta} \rd \theta\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \tan^2 \theta \cos^2 \theta \rd \theta\) | Definition of Real Secant Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {\sin^2 \theta} {\cos^2 \theta} \cos^2 \theta \rd \theta\) | Definition of Real Tangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \sin^2 \theta \rd \theta\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \theta {2 a} - \frac {\sin 2 \theta} {4 a} + C\) | Primitive of Square of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \theta {2 a} - \frac 1 {2 a} \frac {\tan \theta} {1 + \tan^2 \theta} + C\) | Tangent Half-Angle Substitution for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac x {2 \paren {x^2 + a^2} } + \frac 1 {2 a} \arctan \frac x a + C\) | substituting for $\theta$ |
$\blacksquare$
Proof 2
\(\ds \int \frac {x^2 \rd x} {\paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \frac {x^2 + a^2 - a^2} {\paren {x^2 + a^2}^2} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {x^2 + a^2} {\paren {x^2 + a^2}^2} \rd x - a^2 \int \frac {\d x} {\paren {x^2 + a^2}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\d x} {x^2 + a^2} + a^2 \int \frac {\d x} {\paren {x^2 + a^2}^2}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \arctan {\frac x a} + a^2 \int \frac {\d x} {\paren {x^2 + a^2}^2} + C\) | Primitive of Reciprocal of $x^2 + a^2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \arctan {\frac x a} + a^2 \paren {\frac x {2 a^2 \paren {x^2 + a^2} } + \frac 1 {2 a^3} \arctan \frac x a} + C\) | Primitive of Reciprocal of $\paren {x^2 + a^2}^2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-x} {2 \paren {x^2 + a^2} } + \frac 1 {2 a} \arctan \frac x a + C\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.134$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.10.$