Primitive of x squared over a x + b squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x^2 \rd x} {\paren {a x + b}^2} = \frac {a x + b} {a^3} - \frac {b^2} {a^3 \paren {a x + b} } - \frac {2 b} {a^3} \ln \size {a x + b} + C$
Proof 1
Put $u = a x + b$.
Then:
\(\ds x\) | \(=\) | \(\ds \frac {u - b} a\) | ||||||||||||
\(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 a\) |
Then:
\(\ds \int \frac {x^2 \rd x} {\paren {a x + b}^2}\) | \(=\) | \(\ds \int \frac 1 a \paren {\frac {u - b} a}^2 \frac 1 {u^2} \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac 1 {a^3} \paren {1 - \frac {2 b} u + \frac {b^2} {u^2} } \rd u\) | Square of Difference, and simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \int \d u - \frac {2 b} {a^3} \int \frac {\d u} u + \frac {b^2} {a^3} \int \frac {\d u} {u^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac u {a^3} - \frac {2 b} {a^3} \int \frac {\d u} u + \frac {b^2} {a^3} \int \frac {\d u} {u^2} + C\) | Primitive of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac u {a^3} - \frac {2 b} {a^3} \ln \size u + \frac {b^2} {a^3} \int \frac {\d u} {u^2} + C\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac u {a^3} - \frac {2 b} {a^3} \ln \size u + \frac {b^2} {a^3} \frac {-1} u + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a x + b} {a^3} - \frac {b^2} {a^3 \paren {a x + b} } - \frac {2 b} {a^3} \ln \size {a x + b} + C\) | substituting for $u$ and rearranging |
$\blacksquare$
Proof 2
\(\ds \int \frac {x^2 \rd x} {\paren {a x + b}^2}\) | \(=\) | \(\ds \int \frac {a x^2 \rd x} {a \paren {a x + b}^2}\) | multiplying top and bottom by $a$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {x \paren {a x + b - b} \rd x} {a \paren {a x + b}^2}\) | adding and subtracting $b x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {x \paren {a x + b} \rd x} {\paren {a x + b}^2} - \frac b a \int \frac {x \rd x} {\paren {a x + b}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {x \rd x} {a x + b} - \frac b a \int \frac {x \rd x} {\paren {a x + b}^2}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \paren {\frac x a - \frac b {a^2} \ln \size {a x + b} } - \frac b a \int \frac {\d x} {\paren {a x + b}^2} + C\) | Primitive of Reciprocal of $\dfrac x {\paren {a x + b} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \paren {\frac x a - \frac b {a^2} \ln \size {a x + b} } - \frac b a \paren {\frac b {a^2 \paren {a x + b} } + \frac 1 {a^2} \ln \size {a x + b} } + C\) | Primitive of Reciprocal of $\dfrac x {\paren {a x + b}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {a^2} - \frac b {a^3} \ln \size {a x + b} - \frac {b^2} {a^3 \paren {a x + b} } - \frac b {a^3} \ln \size {a x + b} + C\) | multiplying out | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {a^2} - \frac {b^2} {a^3 \paren {a x + b} } - \frac {2 b} {a^3} \ln \size {a x + b} + C\) | gathering terms | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a x} {a^3} + \frac b {a^3} - \frac {b^2} {a^3 \paren {a x + b} } - \frac {2 b} {a^3} \ln \size {a x + b} + C\) | where $\dfrac b {a^3}$ is subsumed into $C$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a x + b} {a^3} - \frac {b^2} {a^3 \paren {a x + b} } - \frac {2 b} {a^3} \ln \size {a x + b} + C\) | simplification |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.68$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(1)$ Integrals Involving $a x + b$: $17.1.8.$