Primitive of x over a x + b
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {a x + b} = \frac x a - \frac b {a^2} \ln \size {a x + b} + C$
Proof 1
Put $u = a x + b$
Then:
\(\ds x\) | \(=\) | \(\ds \frac {u - b} a\) | ||||||||||||
\(\ds \frac {\d x} {\d u}\) | \(=\) | \(\ds \frac 1 a\) |
Then:
\(\ds \int \frac {x \rd x} {a x + b}\) | \(=\) | \(\ds \int \frac 1 a \frac {u - b} {a u} \rd u\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \int \rd u - \frac b {a^2} \int \frac {\d u} u\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac u {a^2} + C - \frac b {a^2} \int \frac {\d u} u\) | Primitive of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac u {a^2} - \frac b {a^2} \ln \size u + C\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a x + b} {a^2} - \frac b {a^2} \ln \size {a x + b} + C\) | substituting for $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x a + \frac b {a^2} - \frac b {a^2} \ln \size {a x + b} + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x a - \frac b {a^2} \ln \size {a x + b} + C\) | subsuming $\dfrac b {a^2}$ into the arbitrary constant $C$ |
$\blacksquare$
Proof 2
From Primitive of Power of $x$ by Power of $a x + b$: Decrement of Power of $x$:
- $\ds \int x^m \paren {a x + b}^n \rd x = \frac {x^m \paren {a x + b}^{n + 1} } {\paren {m + n + 1} a} - \frac {m b} {\paren {m + n + 1} a} \int x^{m - 1} \paren {a x + b}^n \rd x$
Let $m = 1$ and $n = -1$.
Then:
\(\ds \int \frac {x \rd x} {a x + b}\) | \(=\) | \(\ds \int x^1 \paren {a x + b}^{-1} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^1 \paren {a x + b}^0} {\paren 1 a} - \frac {1 b} {\paren 1 a} \int x^0 \paren {a x + b}^{-1} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac x a - \frac b a \int \frac {\d x} {a x + b}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x a - \frac b {a^2} \ln \size {a x + b} + C\) | Primitive of $\dfrac 1 {a x + b}$ |
$\blacksquare$
Proof 3
\(\ds \int \frac {x \rd x} {a x + b}\) | \(=\) | \(\ds \int \frac 1 a \frac {a x \rd x} {a x + b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac 1 a \frac {\paren {a x + b - b} \rd x} {a x + b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \frac {\paren {a x + b} \rd x} {a x + b} - \frac b a \int \frac {\d x} {a x + b}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \d x - \frac b a \int \frac {\d x} {a x + b}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x a - \frac b a \int \frac {\d x} {a x + b}\) | Primitive of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x a - \frac b {a^2} \ln \size {a x + b} + C\) | Primitive of $\dfrac 1 {a x + b}$ |
$\blacksquare$
Also see
- Primitive of $x$ by $\paren {a x + b}^n$ for general $n$
- Primitive of $x$ over $\paren {a x + b}^2$ for the case when $n = -2$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.60$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Front endpapers: A Brief Table of Integrals: $8$.
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(1)$ Integrals Involving $a x + b$: $17.1.2.$