Primitive of x squared over x cubed plus a cubed
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x^2 \rd x} {x^3 + a^3} = \frac 1 3 \ln \size {x^3 + a^3} + C$
Proof 1
\(\ds \map {\frac \d {\d x} } {x^3 + a^3}\) | \(=\) | \(\ds 3 x^2\) | Derivative of Power | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x^2 \rd x} {x^3 + a^3}\) | \(=\) | \(\ds \frac 1 3 \ln \size {x^3 + a^3} + C\) | Primitive of Function under its Derivative |
$\blacksquare$
Proof 2
From Primitive of Power of x less one over Power of x plus Power of a:
- $\ds \int \frac {x^{n - 1} \rd x} {x^n + a^n} = \frac 1 n \ln \size {x^n + a^n} + C$
So:
\(\ds \int \frac {x^2 \rd x} {x^3 + a^3}\) | \(=\) | \(\ds \frac 1 3 \ln \size {x^3 + a^3} + C\) | Primitive of $\dfrac {x^{n - 1} } {\paren {x^n + a^n} }$ with $n = 3$ |
directly.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^3 + a^3$: $14.301$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(14)$ Integrals Involving $x^3 + a^3$: $17.14.3.$