Primitive of x over x cubed plus a cubed
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {x^3 + a^3} = \frac 1 {6 a} \map \ln {\frac {x^2 - a x + a^2} {\paren {x + a}^2} } + \frac 1 {a \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}$
Proof
\(\ds \int \frac {x \rd x} {x^3 + a^3}\) | \(=\) | \(\ds \int \frac {\paren {x + a - a} \rd x} {x^3 + a^3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\paren {x + a} \rd x} {x^3 + a^3} - a \int \frac {\d x} {x^3 + a^3}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\paren {x + a} \rd x} {\paren {x + a} \paren {x^2 - a x + a^2} } - a \int \frac {\d x} {x^3 + a^3}\) | Sum of Two Cubes | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\d x} {x^2 - a x + a^2} - a \int \frac {\d x} {x^3 + a^3}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt 3} \arctan \paren {\frac {2 x - a} {a \sqrt 3} } - a \int \frac {\d x} {x^3 + a^3}\) | Primitive of $\dfrac 1 {x^2 - a x + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt 3} \, \map \arctan {\frac {2 x - a} {a \sqrt 3} } - a \paren {\frac 1 {6 a^2} \ln \size {\frac {\paren {x + a}^2} {x^2 - a x + a^2} } + \frac 1 {a^2 \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3} }\) | Primitive of $\dfrac 1 {x^3 + a^3}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {a \sqrt 3} \, \map \arctan {\frac {2 x - a} {a \sqrt 3} } - \frac 1 {6 a} \ln \size {\frac {\paren {x + a}^2} {x^2 - a x + a^2} } - \frac 1 {a \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {6 a} \, \map \ln {\frac {x^2 - a x + a^2} {\paren {x + a}^2} } + \frac 1 {a \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}\) | gathering terms |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^3 + a^3$: $14.300$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(14)$ Integrals Involving $x^3 + a^3$: $17.14.2.$