Product of GCD and LCM/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

$\lcm \set {a, b} \times \gcd \set {a, b} = \size {a b}$

where:

$\lcm \set {a, b}$ denotes the lowest common multiple of $a$ and $b$
$\gcd \set {a, b}$ denotes the greatest common divisor of $a$ and $b$.


Proof

From Fundamental Theorem of Arithmetic, let:

\(\ds m\) \(=\) \(\ds {p_1}^{k_1} {p_2}^{k_2} \dotsm {p_r}^{k_r}\)
\(\ds n\) \(=\) \(\ds {p_1}^{l_1} {p_2}^{l_2} \dotsm {p_r}r^{l_r}\)


From LCM from Prime Decomposition:

$\lcm \set {m, n} = p_1^{\max \set {k_1, l_1} } p_2^{\max \set {k_2, l_2} } \dotsm p_r^{\max \set {k_r, l_r} }$


From GCD from Prime Decomposition:

$\gcd \set {m, n} = p_1^{\min \set {k_1, l_1} } p_2^{\min \set {k_2, l_2} } \dotsm p_r^{\min \set {k_r, l_r} }$


From Sum of Maximum and Minimum, for all $i \in \set {1, 2, \ldots, r}$:

$\min \set {k_i, l_i} + \max \set {k_i, l_i} = k_i + l_i$


Hence:

\(\ds \gcd \set {m, n} \times \lcm \set {m, n}\) \(=\) \(\ds p_1^{k_1 + l_1} p_2^{k_2 + l_2} \dotsm p_r^{k_r + l_r}\)
\(\ds \) \(=\) \(\ds p_1^{k_1} p_1^{l_1} p_2^{k_2} p_2^{l_2} \dotsm p_r^{k_r} p_r^{l_r}\)
\(\ds \) \(=\) \(\ds p_1^{k_1} p_2^{k_2} \dotsm p_r^{k_r} \times p_1^{l_1} p_2^{l_2} \dotsm p_r^{l_r}\)
\(\ds \) \(=\) \(\ds m n\)

$\blacksquare$


Sources