Properties of Binomial Coefficients
Jump to navigation
Jump to search
Theorem
This page gathers together some of the simpler and more common identities concerning binomial coefficients.
Symmetry Rule for Binomial Coefficients
Let $n \in \Z_{>0}, k \in \Z$.
Then:
- $\dbinom n k = \dbinom n {n - k}$
Negated Upper Index of Binomial Coefficient
- $\dbinom r k = \paren {-1}^k \dbinom {k - r - 1} k$
Moving Top Index to Bottom in Binomial Coefficient
- $\dbinom n m = \paren {-1}^{n - m} \dbinom {-\paren {m + 1} } {n - m}$
Factors of Binomial Coefficient
For all $r \in \R, k \in \Z$:
- $k \dbinom r k = r \dbinom {r - 1} {k - 1}$
where $\dbinom r k$ is a binomial coefficient.
Hence:
- $\dbinom r k = \dfrac r k \dbinom {r - 1} {k - 1}$ (if $k \ne 0$)
and:
- $\dfrac 1 r \dbinom r k = \dfrac 1 k \dbinom {r - 1} {k - 1}$ (if $k \ne 0$ and $r \ne 0$)
Pascal's Rule
For positive integers $n, k$ with $1 \le k \le n$:
- $\dbinom n {k - 1} + \dbinom n k = \dbinom {n + 1} k$
This is also valid for the real number definition:
- $\forall r \in \R, k \in \Z: \dbinom r {k - 1} + \dbinom r k = \dbinom {r + 1} k$
Sum of Binomial Coefficients over Lower Index
- $\ds \sum_{i \mathop = 0}^n \binom n i = 2^n$
Alternating Sum and Difference of $r \choose k$ up to $n$
- $\ds \sum_{k \mathop \le n} \paren {-1}^k \binom r k = \paren {-1}^n \binom {r - 1} n$
Alternating Sum and Difference of Binomial Coefficients for Given n
- $\ds \forall n \in \Z_{\geq 0}: \sum_{i \mathop = 0}^n \paren {-1}^i \binom n i = \delta_{n 0}$
Sum of Even Index Binomial Coefficients
- $\ds \sum_{i \mathop \ge 0} \binom n {2 i} = 2^{n - 1}$
Sum of Odd Index Binomial Coefficients
- $\ds \sum_{i \mathop \ge 0} \binom n {2 i + 1} = 2^{n - 1}$
Sum of $r+k \choose k$ up to $n$
- $\ds \forall n \in \Z: n \ge 0: \sum_{k \mathop = 0}^n \binom {r + k} k = \binom {r + n + 1} n$
Rising Sum of Binomial Coefficients
- $\ds \sum_{j \mathop = 0}^m \binom {n + j} n = \binom {n + m + 1} {n + 1} = \binom {n + m + 1} m$
Sum of Binomial Coefficients over Upper Index
\(\ds \sum_{j \mathop = 0}^n \binom j m\) | \(=\) | \(\ds \binom {n + 1} {m + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dbinom 0 m + \dbinom 1 m + \dbinom 2 m + \cdots + \dbinom n m = \dbinom {n + 1} {m + 1}\) |
Increasing Sum of Binomial Coefficients
- $\ds \sum_{j \mathop = 0}^n j \binom n j = n 2^{n - 1}$
Increasing Alternating Sum of Binomial Coefficients
- $\ds \sum_{j \mathop = 0}^n \paren {-1}^{n + 1} j \binom n j = 0$
Chu-Vandermonde Identity
\(\ds \sum_{k \mathop = 0}^n \binom r k \binom s {n - k}\) | \(=\) | \(\ds \binom r 0 \binom s n + \binom r 1 \binom s {n - 1} + \binom r 2 \binom s {n - 2} + \cdots + \binom r n \binom s 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \binom {r + s} n\) |
Sum of Squares of Binomial Coefficients
- $\ds \sum_{i \mathop = 0}^n \binom n i^2 = \binom {2 n} n$
Binomial Coefficient: $\left({-1}\right)^n \dbinom {-n} {k - 1} = \left({-1}\right)^k \dbinom {-k} {n - 1}$
- $\paren {-1}^n \dbinom {-n} {k - 1} = \paren {-1}^k \dbinom {-k} {n - 1}$
Binomial Coefficient as Infinite Product
\(\ds \prod_{n \mathop = 1}^\infty \frac {\paren {n + b} } n \frac {\paren {n + a - b} } {\paren {n + a} }\) | \(=\) | \(\ds \frac {\paren {1 + b} } 1 \frac {\paren {1 + a - b} } {\paren {1 + a} } \times \frac {\paren {2 + b} } 2 \frac {\paren {2 + a - b} } {\paren {2 + a} } \times \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dbinom a b\) |
Particular Values
Binomial Coefficient $\dbinom 0 0$
- $\dbinom 0 0 = 1$
Binomial Coefficient $\dbinom 0 n$
- $\dbinom 0 n = \delta_{0 n}$
- $\dbinom m n = \begin{cases}\dfrac {m!} {n! \paren {m - n}!} & : 0 \le n \le m \\&\\0 & : \text { otherwise } \end{cases}$
Binomial Coefficient $\dbinom 1 n$
- $\dbinom 1 n = \begin{cases} 1 & : n \in \set {0, 1} \\ 0 & : \text {otherwise} \end{cases}$
N Choose Negative Number is Zero
Let $n \in \Z$ be an integer.
Let $k \in \Z_{<0}$ be a (strictly) negative integer.
Then:
- $\dbinom n k = 0$
Binomial Coefficient with Zero
- $\forall r \in \R: \dbinom r 0 = 1$
Binomial Coefficient with One
- $\forall r \in \R: \dbinom r 1 = r$
Binomial Coefficient with Self
- $\forall n \in \Z: \dbinom n n = \sqbrk {n \ge 0}$
where $\sqbrk {n \ge 0}$ denotes Iverson's convention.
That is:
- $\forall n \in \Z_{\ge 0}: \dbinom n n = 1$
- $\forall n \in \Z_{< 0}: \dbinom n n = 0$
Binomial Coefficient with Self minus One
- $\forall n \in \N_{>0}: \dbinom n {n - 1} = n$
Binomial Coefficient with Two
- $\forall r \in \R: \dbinom r 2 = \dfrac {r \paren {r - 1} } 2$