Properties of Restriction of Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\RR \subseteq S \times S$ be a relation on $S$.


Let $T \subseteq S$ be a subset of $S$.

Let $\RR {\restriction_T} \subseteq T \times T$ be the restriction of $\RR$ to $T$.


If $\RR$ on $S$ has any of the properties:

... then $\RR {\restriction_T}$ on $T$ has the same properties.


Proof

Reflexivity

Restriction of Reflexive Relation is Reflexive

Suppose $\RR$ is reflexive on $S$.

Then:

$\forall x \in S: \tuple {x, x} \in \RR$

So:

$\forall x \in T: \tuple {x, x} \in \RR {\restriction_T}$

Thus $\RR {\restriction_T}$ is reflexive on $T$.

$\blacksquare$


Restriction of Antireflexive Relation is Antireflexive

Suppose $\RR$ is antireflexive on $S$.

Then:

$\forall x \in S: \tuple {x, x} \notin \RR$

So:

$\forall x \in T: \tuple {x, x} \notin \RR \restriction_T$

Thus $\RR {\restriction_T}$ is antireflexive on $T$.

$\blacksquare$


Symmetry

Restriction of Symmetric Relation is Symmetric

Suppose $\RR$ is symmetric on $S$.


Then:

\(\ds \tuple {x, y}\) \(\in\) \(\ds \RR {\restriction_T}\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \paren {T \times T} \cap \RR\) Definition of Restriction of Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\in\) \(\ds T \times T\)
\(\, \ds \land \, \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \RR\) Definition of Set Intersection
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\in\) \(\ds T \times T\)
\(\, \ds \land \, \) \(\ds \tuple {y, x}\) \(\in\) \(\ds \RR\) $\RR$ is symmetric on $S$
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\in\) \(\ds \paren {T \times T} \cap \RR\) Definition of Set Intersection
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\in\) \(\ds \RR {\restriction_T}\) Definition of Restriction of Relation


and so $\RR {\restriction_T}$ is symmetric on $T$.

$\blacksquare$


Restriction of Asymmetric Relation is Asymmetric

Suppose $\RR$ is asymmetric on $S$.


Then:

\(\ds \tuple {x, y}\) \(\in\) \(\ds \RR {\restriction_T}\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \paren {T \times T} \cap \RR\) Definition of Restriction of Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \RR\) Intersection is Subset
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\notin\) \(\ds \RR\) $\RR$ is asymmetric on $S$
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\notin\) \(\ds \RR {\restriction_T}\) Definition of Restriction of Relation


and so $\RR {\restriction_T}$ is asymmetric on $T$.

$\blacksquare$


Restriction of Antisymmetric Relation is Antisymmetric

Suppose $\RR$ is antisymmetric on $S$.

Then:

\(\ds \set {\tuple {x, y}, \tuple {y, x} }\) \(\subseteq\) \(\ds \RR {\restriction_T}\)
\(\ds \leadsto \ \ \) \(\ds \set {\tuple {x, y}, \tuple {y, x} }\) \(\subseteq\) \(\ds \paren {T \times T} \cap \RR\) Definition of Restriction of Relation
\(\ds \leadsto \ \ \) \(\ds \set {\tuple {x, y}, \tuple {y, x} }\) \(\subseteq\) \(\ds \RR\) Intersection is Subset
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds y\) $\RR$ is Antisymmetric on $S$

Thus $\RR {\restriction_T}$ is antisymmetric on $T$.

$\blacksquare$


Transitivity

Restriction of Transitive Relation is Transitive

Suppose $\RR$ is transitive on $S$.

Then by definition:

$\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR \implies \tuple {x, z} \in \RR$


So:

\(\ds \set {\tuple {x, y}, \tuple {y, z} }\) \(\subseteq\) \(\ds \RR {\restriction_T}\)
\(\ds \leadsto \ \ \) \(\ds \set {\tuple {x, y}, \tuple {y, z} }\) \(\subseteq\) \(\ds \paren {T \times T} \cap \RR\) Definition of Restriction of Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, z}\) \(\in\) \(\ds \paren {T \times T} \cap \RR\) $\RR$ is transitive on $S$
\(\ds \leadsto \ \ \) \(\ds \tuple {x, z}\) \(\in\) \(\ds \RR {\restriction_T}\) Definition of Restriction of Relation


Therefore, if $x, y, z \in T$, it follows that:

$\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR {\restriction_T} \implies \tuple {x, z} \in \RR {\restriction_T}$

and so by definition $\RR {\restriction_T}$ is a transitive relation on $T$.

$\blacksquare$


Restriction of Antitransitive Relation is Antitransitive

Suppose $\RR$ is antitransitive on $S$.

Then by definition:

$\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR \implies \tuple {x, z} \notin \RR$


So:

\(\ds \set {\tuple {x, y}, \tuple {y, z} }\) \(\subseteq\) \(\ds \RR {\restriction_T}\)
\(\ds \leadsto \ \ \) \(\ds \set {\tuple {x, y}, \tuple {y, z} }\) \(\subseteq\) \(\ds \paren {T \times T} \cap \RR\) Definition of Restriction of Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, z}\) \(\notin\) \(\ds \paren {T \times T} \cap \RR\) as $\RR$ is antitransitive on $S$
\(\ds \leadsto \ \ \) \(\ds \tuple {x, z}\) \(\in\) \(\ds \RR {\restriction_T}\) Definition of Restriction of Relation


Therefore, if $x, y, z \in T$, it follows that:

$\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR {\restriction_T} \implies \tuple {x, z} \notin \RR {\restriction_T}$

and so by definition $\RR {\restriction_T}$ is an antitransitive relation on $T$.

$\blacksquare$


Connectedness

Restriction of Connected Relation is Connected

Suppose $\RR$ is connected on $S$.

That is:

$\forall a, b \in S: a \ne b \implies \tuple {a, b} \in \RR \lor \tuple {b, a} \in \RR$


So:

\(\ds a, b\) \(\in\) \(\ds T\)
\(\ds \leadsto \ \ \) \(\ds \tuple {a, b}\) \(\in\) \(\ds T \times T\)
\(\, \ds \land \, \) \(\ds \tuple {b, a}\) \(\in\) \(\ds T \times T\) Definition of Ordered Pair and Definition of Cartesian Product
\(\ds \leadsto \ \ \) \(\ds \tuple {a, b}\) \(\in\) \(\ds \paren {T \times T} \cap \RR\)
\(\, \ds \lor \, \) \(\ds \tuple {b, a}\) \(\in\) \(\ds \paren {T \times T} \cap \RR\) as $\RR$ is connected on $S$
\(\ds \leadsto \ \ \) \(\ds \tuple {a, b}\) \(\in\) \(\ds R \restriction_T\)
\(\, \ds \lor \, \) \(\ds \tuple {b, a}\) \(\in\) \(\ds R {\restriction_T}\) Definition of Restriction of Relation


and so $\RR {\restriction_T}$ is connected on $T$.

$\blacksquare$


Also see

Properties of Relation Not Preserved by Restriction

If a relation is:

it is impossible to state without further information whether or not any restriction of that relation has the same properties.