Quadratic Residue/Examples/29
Jump to navigation
Jump to search
Example of Quadratic Residues
The set of quadratic residues modulo $29$ is:
- $\set {1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28}$
This sequence is A010391 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Proof
From Square Modulo n Congruent to Square of Inverse Modulo n, to list the quadratic residues of $29$ it is sufficient to work out the squares $1^2, 2^2, \dotsc, \paren {\dfrac {28} 2}^2$ modulo $29$.
So:
\(\ds 1^2\) | \(\equiv\) | \(\ds 1\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 2^2\) | \(\equiv\) | \(\ds 4\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 3^2\) | \(\equiv\) | \(\ds 9\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 4^2\) | \(\equiv\) | \(\ds 16\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 5^2\) | \(\equiv\) | \(\ds 25\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 6^2\) | \(\equiv\) | \(\ds 7\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 7^2\) | \(\equiv\) | \(\ds 20\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 8^2\) | \(\equiv\) | \(\ds 6\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 9^2\) | \(\equiv\) | \(\ds 23\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 10^2\) | \(\equiv\) | \(\ds 13\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 11^2\) | \(\equiv\) | \(\ds 5\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 12^2\) | \(\equiv\) | \(\ds 28\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 13^2\) | \(\equiv\) | \(\ds 24\) | \(\ds \pmod {29}\) | |||||||||||
\(\ds 14^2\) | \(\equiv\) | \(\ds 22\) | \(\ds \pmod {29}\) |
So the set of quadratic residues modulo $29$ is:
- $\set {1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28}$
The set of quadratic non-residues of $29$ therefore consists of all the other non-zero least positive residues:
- $\set {2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27}$
This sequence is A028742 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
$\blacksquare$
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {3-5}$ The Use of Computers in Number Theory: Exercise $6$