Quadruple Angle Formulas/Sine/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Quadruple Angle Formula for Sine

For all $\theta$ such that $\theta \ne 0, \pm \pi, \pm 2 \pi \ldots$

$\dfrac {\sin 4 \theta} {\sin \theta} = 2 \cos 3 \theta + 2 \cos \theta$

where $\sin$ denotes sine and $\cos$ denotes cosine.


Proof

First note that when $\theta = 0, \pm \pi, \pm 2 \pi \ldots$:

$\sin \theta = 0$

so $\dfrac {\sin 4 \theta} {\sin \theta}$ is undefined.


Therefore for the rest of the proof it is assumed that $\theta \ne 0, \pm \pi, \pm 2 \pi \ldots$


\(\ds \frac {\sin 4 \theta} {\sin \theta}\) \(=\) \(\ds 8 \cos^3 \theta - 4 \cos \theta\) Quadruple Angle Formula for Sine: Corollary 1
\(\ds \) \(=\) \(\ds 8 \paren {\dfrac {3 \cos \theta + \cos 3 \theta} 4} - 4 \cos \theta\) Power Reduction Formulas: Cosine Cubed
\(\ds \) \(=\) \(\ds 2 \cos 3 \theta + 2 \cos \theta\) multiplying out and gathering terms

$\blacksquare$


Sources

(although see Quadruple Angle Formulas/Sine/Mistake for analysis of an error in that work)