Quadruple Angle Formulas/Sine/Corollary 1

From ProofWiki
Jump to navigation Jump to search

Corollary to Quadruple Angle Formula for Sine

For all $\theta$ such that $\theta \ne 0, \pm \pi, \pm 2 \pi \ldots$

$\dfrac {\sin 4 \theta} {\sin \theta} = 8 \cos^3 \theta - 4 \cos \theta$

where $\sin$ denotes sine and $\cos$ denotes cosine.


Proof

First note that when $\theta = 0, \pm \pi, \pm 2 \pi \ldots$:

$\sin \theta = 0$

so $\dfrac {\sin 4 \theta} {\sin \theta}$ is undefined.


Therefore for the rest of the proof it is assumed that $\theta \ne 0, \pm \pi, \pm 2 \pi \ldots$


\(\ds \sin 4 \theta\) \(=\) \(\ds 4 \sin \theta \cos \theta - 8 \sin^3 \theta \cos \theta\) Quadruple Angle Formula for Sine
\(\ds \leadsto \ \ \) \(\ds \dfrac {\sin 4 \theta} {\sin \theta}\) \(=\) \(\ds 4 \cos \theta - 8 \paren {1 - \cos^2 \theta} \cos \theta\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 8 \cos^3 \theta - 4 \cos \theta\) multiplying out and gathering terms

$\blacksquare$


Sources

(although see Quadruple Angle Formulas/Sine/Mistake for analysis of an error in that work)