Quotient Mapping/Examples/Congruence Modulo 3
Jump to navigation
Jump to search
Example of Quotient Mapping
Let $x \mathrel \RR y$ be the equivalence relation defined on the integers as congruence modulo $3$:
- $x \mathrel \RR y \iff x \equiv y \pmod 3$
defined as:
- $\forall x, y \in \Z: x \equiv y \pmod 3 \iff \exists k \in \Z: x - y = 3 k$
That is, if their difference $x - y$ is a multiple of $3$.
From Congruence Modulo $3$, the quotient set induced by $\RR$ is:
- $\Z / \RR = \set {\eqclass 0 3, \eqclass 1 3, \eqclass 2 3}$
Hence the quotient mapping $q_\RR: \Z \to \Z / \RR$ is defined as:
- $\forall x \in \Z: \map {q_\RR} x = \eqclass x 3 = \set {x + 3 k: k \in \Z}$
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{I}$: Sets and Functions: Quotient Functions