Rational Root Theorem

From ProofWiki
Jump to navigation Jump to search







Let $P \in \Z \sqbrk X$.

Let $p, q \in \Z$ such that:

$p \perp q$
$a_n, a_0 \ne 0$

where $\perp$ denotes coprimality.

\(\ds \map P X\) \(=\) \(\ds a_n X^n + a_{n - 1} X^{n - 1} + \cdots + a_1 X + a_0\) Definition of $P$

Assume that $\dfrac p q$ is a root of $P$,

To clear denominators, multiply both sides by $q^n$:

\(\ds \map P {\dfrac p q}\) \(=\) \(\ds a_n \paren {\dfrac p q}^n + a_{n - 1} \paren {\dfrac p q}^{n - 1} + \cdots + a_1 \paren {\dfrac p q} + a_0\)
\(\ds \) \(=\) \(\ds a_n p^n + a_{n - 1} p^{n - 1} q + \cdots + a_1 p q^{n - 1} + a_0 q^n\) multiplying both sides by $q^n$
\(\ds 0\) \(=\) \(\ds a_n p^n + a_{n - 1} p^{n - 1} q + \cdots + a_1 p q^{n - 1} + a_0 q^n\) as $\frac p q$ is a root of $P$
\(\ds -a_0 q^n\) \(=\) \(\ds a_n p^n + a_{n - 1} p^{n - 1} q + \cdots + a_1 p q^{n - 1}\) subtracting $a_0 q^n$ from both sides
\(\ds \) \(=\) \(\ds p \paren {a_n p^{n - 1} + a_{n - 1} p^{n - 2} q + \cdots + a_1 q^{n - 1} }\) Distributive Laws of Arithmetic

By the closure of addition and multiplication over the integers:

$a_n p^{n - 1} + a_{n - 1} p^{n - 2} q + \cdots + a_1 q^{n - 1} \in \Z$

By Euclid's Lemma, either:

$p \divides q^n$

or:

$p \divides a_0$

where $\divides$ denotes divisibility.

Because $p \nmid q$ we have that:

$p \nmid q^n$

Hence:

$p \divides a_0$

Shift $a_n$ term to right hand side and factor out $q$:

\(\ds -a_0 p^n\) \(=\) \(\ds q \paren {a_{n - 1} p^{n - 1} + a_{n - 2} p q^{n - 2} + \cdots + a_0 q^{n - 1} }\)

It follows that:

$q \divides a_n$