Real Function is Expressible as Sum of Even Function and Odd Function/Examples/Arbitrary Function 1

From ProofWiki
Jump to navigation Jump to search

Example of Use of Real Function is Expressible as Sum of Even Function and Odd Function

Let $f: \R \to \R$ denote the real function:

$\map f x = e^{2 x} \sin x$

$f$ can be expressed as the pointwise sum of:

the even function $\map g x = \dfrac {\paren {e^{2 x} - e^{-2 x} } \sin x} 2$

and:

the odd function $\map h x = \dfrac {\paren {e^{2 x} + e^{-2 x} } \sin x} 2$


Proof

\(\ds \dfrac {\map f x + \map f {-x} } 2\) \(=\) \(\ds \dfrac {e^{2 x} \sin x + e^{2 \paren {-x} } \map \sin {-x} } 2\)
\(\ds \) \(=\) \(\ds \dfrac {e^{2 x} \sin x + e^{-2 x} \paren {-\sin x} } 2\) Sine Function is Odd
\(\ds \) \(=\) \(\ds \dfrac {\paren {e^{2 x} - e^{-2 x} } \sin x} 2\)

and:

\(\ds \dfrac {\map f x - \map f {-x} } 2\) \(=\) \(\ds \dfrac {e^{2 x} \sin x - e^{2 \paren {-x} } \map \sin {-x} } 2\)
\(\ds \) \(=\) \(\ds \dfrac {e^{2 x} \sin x - e^{-2 x} \paren {-\sin x} } 2\) Sine Function is Odd
\(\ds \) \(=\) \(\ds \dfrac {\paren {e^{2 x} + e^{-2 x} } \sin x} 2\)

The result follows.

$\blacksquare$


Sources