Riesz-Markov-Kakutani Representation Theorem/Lemma 8

From ProofWiki
Jump to navigation Jump to search

Lemma for Riesz-Markov-Kakutani Representation Theorem

Let $\struct {X, \tau}$ be a locally compact Hausdorff space.

Let $\map {C_c} X$ be the space of continuous complex functions with compact support on $X$.

Let $\Lambda$ be a positive linear functional on $\map {C_c} X$.

There exists a $\sigma$-algebra $\MM$ over $X$ which contains the Borel $\sigma$-algebra of $\struct {X, \tau}$.

There exists a unique complete Radon measure $\mu$ on $\MM$ such that:

$\ds \forall f \in \map {C_c} X: \Lambda f = \int_X f \rd \mu$


Notation

For an open set $V \in \tau$ and a mapping $f \in \map {C_c} X$:

$f \prec V \iff \supp f \subset V$

where $\supp f$ denotes the support of $f$.




For a compact set $K \subset X$ and a mapping $f \in \map {C_c} X$:

$K \prec f \iff \forall x \in K: \map f x = 1$


Construction of $\mu$ and $\MM$

For every $V \in \tau$, define:

$\map {\mu_1} V = \sup \set {\Lambda f: f \prec V}$



Note that $\mu_1$ is monotonically increasing.

That is, for all $V, W \in \tau$ such that $V \subset W$, we have:

\(\ds \map {\mu_1} V\) \(=\) \(\ds \sup \set {\Lambda f: \supp f \subset V}\)
\(\ds \) \(\le\) \(\ds \sup \set {\Lambda f: \supp f \subset W}\) \(\ds = \map {\mu_1} W\)

$\Box$

For every other subset $E \subset X$, define:

$\map \mu E = \inf \set {\map {\mu_1} V: V \supset E \land V \in \tau}$

Since $\mu_1$ is monotonically increasing:

$\mu_1 = \mu {\restriction_\tau}$

Define:

$\MM_F = \set {E \subset X : \map \mu E < \infty \land \map \mu E = \sup \set {\map \mu K: K \subset E \land K \text { compact} } }$

Define:

$\MM = \set {E \subset X : \forall K \subset X \text { compact}: E \cap K \in \MM_F}$


Lemma

$\MM_F$ is closed under set difference, union and intersection.


Proof

Let $\tuple {A, B} \in \paren {\MM_F}^2$.


By Lemma 6, there exist compact sets $K_1, K_2$ and open sets $V_1, V_2$ such that:

$K_1 \subset A \subset V_1$
$K_2 \subset B \subset V_2$

and:

$\forall i \in \set {1, 2}: \map \mu {V_i \setminus K_i} < \dfrac \epsilon 2$

Now:

\(\ds A \setminus B\) \(\subset\) \(\ds V_1 \setminus K_2\)
\(\ds \) \(\subset\) \(\ds \paren {V_1 \setminus K_1} \cup \paren {K_1 \setminus V_2} \cup \paren {V_2 \setminus K_2}\)


So, by Lemma 1:

$\map \mu {A_B} \le \map \mu {K_1 \setminus V_2} + \epsilon$

By Closed Subspace of Compact Space is Compact:

$K_1 \setminus V_2$ is compact.

Since $K_1 \setminus V_2 \subset A \setminus B$, there exist compact subsets of $A \setminus B$ arbitrarily close in measure to $A \setminus B$.

So:

$A \setminus B \in \MM_F$.

Now, by Lemma 7:

$A \cup B = \paren {A \setminus B} \cup B \in \MM_F$

and:

$A \cap B = A \setminus \paren {A \setminus B} \in \MM_F$.

$\blacksquare$