Scheffé's Lemma
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $f_n$ be a sequence of $\mu$-integrable functions that converge almost everywhere to another $\mu$-integrable function $f$.
Then $f_n$ converges to $f$ in $L^1$ if and only if $\ds \int_X \size {f_n} \rd \mu$ converges to $\ds \int_X \size f \rd \mu$.
Corollary
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $f_n$ be a sequence of $\mu$-integrable functions that convergence in measure to another $\mu$-integrable function $f$.
Then $f_n$ converges to $f$ in $L^1$ if and only if $\ds \int_X \size {f_n} \rd \mu$ converges to $\ds \int_X \size f \rd \mu$.
Proof
Sufficient Condition
Let $f_n \to f$ in $L^1$.
Then:
\(\ds \size {\int_X \size f \rd \mu - \int_X \size {f_n} \rd \mu}\) | \(\le\) | \(\ds \int_X \size {f - f_n} d\mu\) | Reverse Triangle Inequality on $L^1$ |
and so $f_n \to f$ in $L^1$ implies the right hand side of this inequality goes to $0$ as $n$ grows to infinity.
Since the left hand side of the inequality is non-negative, it also goes to $0$ as $n$ grows to infinity.
$\Box$
Necessary Condition
Let $\ds \int_X \size {f_n} \rd \mu \to \int_X \size f \rd \mu$.
We wish to show that:
- $\ds \int_X \size {f - f_n} \rd \mu \to 0$
First, by Triangle Inequality:
- $\forall a, b \in \R: \size a + \size b - \size {a - b} \ge 0$
Therefore, for each $x \in X$:
- $\size {\map f x} + \size {\map {f_n} x} - \size {\map f x - \map {f_n} x} \ge 0$
Thus, we may employ Fatou's Lemma for Integrals on the expression $\ds \int_X \liminf_n \size f + \size {f_n} - \size {f - f_n} \rd \mu$ to yield:
- $(1): \ds \int_X \liminf_n \size f + \size {f_n} - \size {f - f_n} \rd \mu \le \liminf_n \int_X \size f + \size {f_n} - \size {f - f_n} \rd \mu$
Now, the integrand on the left hand side of $(1)$ equals $2 \size f$ almost everywhere since $f_n \to f$ pointwise almost everywhere.
So the integral on the left hand side of $(1)$ is:
- $\ds 2 \int_X \size f \rd \mu$
We may thus rewrite $(1)$ as:
\(\ds 2 \int_X \size f \rd \mu\) | \(\le\) | \(\ds \liminf_n \int_X \size f + \size {f_n} - \size {f - f_n} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \liminf_n \int_X \size f \rd \mu + \liminf_n \int_X \size {f_n} \rd \mu + \liminf_n \paren{ - \int_X \size {f - f_n} \rd \mu }\) | Integral Operator is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int_x \size f \rd \mu + \liminf_n \paren{ -\int_X \size {f - f_n} \rd \mu }\) | by hypothesis: $\ds \int_X \size {f_n} \rd \mu \to \int_X \size f \rd \mu$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int_x \size f \rd \mu - \limsup_n \int_X \size {f - f_n} \rd \mu\) | Properties of limsup and liminf |
Rearranging the left hand side and right hand side of this inequality, we get:
- $\ds \limsup_n \int_X \size {f - f_n} \rd \mu \le 0$
This implies that:
- $\ds \int_X \size {f - f_n} \rd \mu \to 0$
$\blacksquare$
Source of Name
This entry was named for Henry Scheffé.