Second Translation Property of Laplace Transforms
Jump to navigation
Jump to search
Theorem
Let $f$ be a function such that $\laptrans f$ exists.
Let $\laptrans {\map f t} = \map F s$ denote the Laplace transform of $f$.
Let $a \in \C$ or $\R$ be constant.
Let $g$ be the function defined as:
- $\map g t = \begin {cases} \map f {t - a} & : t > a \\ 0 & : t \le a \end {cases}$
Then:
- $\laptrans {\map g t} = e^{-a s} \map F s$
Proof 1
\(\ds \laptrans {\map f {t - a} }\) | \(=\) | \(\ds \int_0^{\to + \infty} e^{-s t} \map f {t - a} \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\to + \infty} e^{-s \paren {t - a} } e^{-a s} \map f {t - a} \rd \paren {t - a}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-a s} \int_0^{\to + \infty} e^{-s \paren {t - a} } \map f {t - a} \rd \paren {t - a}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-a s}\map F s\) | Definition of Laplace Transform |
$\blacksquare$
Proof 2
\(\ds \laptrans {\map g t}\) | \(=\) | \(\ds \int_0^\infty e^{-s t} \map g t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^a e^{-s t} \map g t \rd t + \int_a^\infty e^{-s t} \map g t \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^a 0 \times e^{-s t} \rd t + \int_a^\infty e^{-s t} \map f {t - a} \rd t\) | Definition of $\map g t$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_a^\infty e^{-s t} \map f {t - a} \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^\infty e^{-s \paren {u + a} } \map f u \rd u\) | Integration by Substitution: $t = u + a$ | |||||||||||
\(\ds \) | \(=\) | \(\ds e^{-a s} \int_0^\infty e^{-s u} \map f u \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-a s} \map F s\) | Definition of Laplace Transform |
$\blacksquare$
Examples
Example $1$
- $\laptrans {\paren {t - 2}^3} = \dfrac {6 e^{-2 s} } {s^4}$
where $t > 2$.
Example $2$
Let $f: \R \to \R$ be the function defined as:
- $\forall t \in \R: \map f t = \begin {cases} \map \cos {t - \dfrac {2 \pi} 3} & : t \ge \dfrac {2 \pi} 3 \\ 0 & : t < \dfrac {2 \pi} 3 \end {cases}$
Then:
- $\laptrans {\map f t} = s \exp \dfrac {-2 \pi s} 3 \dfrac 1 {s^2 + 1}$
Also known as
The second translation property is also known as the second shifting property.
Also see
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Important Properties of Laplace Transforms: $3$. Second translation or shifting property: Theorem $1 \text{-} 4$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Appendix $\text A$: Table of General Properties of Laplace Transforms: $4.$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 32$: Table of General Properties of Laplace Transforms: $32.6$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 33$: Laplace Transforms: Table of General Properties of Laplace Transforms: $33.6$