First Translation Property of Laplace Transforms
Jump to navigation
Jump to search
Theorem
Let $\map f t: \R \to \R$ or $\R \to \C$ be a function of exponential order $a$ for some constant $a \in \R$.
Let $\laptrans {\map f t} = \map F s$ be the Laplace transform of $f$.
Let $e^t$ be the exponential function.
Then:
- $\laptrans {e^{a t} \map f t} = \map F {s - a}$
everywhere that $\laptrans f$ exists, for $\map \Re s > a$
Proof
\(\ds \laptrans {e^{a t} \map f t}\) | \(=\) | \(\ds \int_0^{\to +\infty} e^{-s t} e^{a t} \map f t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\to +\infty} e^{-s t + a t} \map f t \rd t\) | Exponent Combination Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\to +\infty} e^{-\paren {s - a} t} \map f t \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map F {s - a}\) | Definition of Laplace Transform |
$\blacksquare$
Examples
Example $1$
- $\laptrans {e^{-t} \cos 2 t} = \dfrac {s + 1} {s^2 + 2 s + 5}$
Example $2$
- $\laptrans {t^2 e^{3 t} } = \dfrac 2 {\paren {s - 3}^3}$
Example $3$
- $\laptrans {e^{-2 t} \sin 4 t} = \dfrac 4 {s^2 + 4 s + 20}$
Example $4$
- $\laptrans {e^{4 t} \cosh 5 t} = \dfrac {s - 4} {s^2 - 8 s - 9}$
Example $5$
- $\laptrans {e^{-3 t} \paren {3 \cos 6 t - 5 \sin 6 t} } = \dfrac {3 s - 24} {s^2 + 4 s + 40}$
Also known as
The first translation property is also known as the first shifting property.
Also see
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Important Properties of Laplace Transforms: $2$. First translation or shifting property: Theorem $1 \text{-} 3$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Solved Problems: Translation and Change of Scale Properties: $7$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Appendix $\text A$: Table of General Properties of Laplace Transforms: $3.$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 32$: Table of General Properties of Laplace Transforms: $32.5$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 33$: Laplace Transforms: Table of General Properties of Laplace Transforms: $33.5$
- For a video presentation of the contents of this page, visit the Khan Academy.