Series Expansion of Function over Complete Orthonormal Set

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map f x$ be a real function defined over the interval $\openint a b$.

Let $\map f x$ be able to be expressed in terms of a complete orthonormal set of real functions $S := \family {\map {\phi_i} x}_{i \mathop \in I}$ for some indexing set $I$:

$\map f x = \ds \sum_{i \mathop \in I} a_i \map {\phi_i} x$


Then the coefficients $\family {a_i}_{i \mathop \in I}$ can be determined as:

$\forall i \in I: a_i = \ds \int_a^b \map f x \map {\phi_i} x \rd x$


Proof

\(\ds \map f x\) \(=\) \(\ds \sum_{i \mathop \in I} a_i \map {\phi_i} x\)
\(\ds \leadsto \ \ \) \(\ds \map f x \map {\phi_n} x\) \(=\) \(\ds \sum_{i \mathop \in I} a_i \map {\phi_i} x \map {\phi_n} x\) for arbitrary $n \in I$
\(\ds \leadsto \ \ \) \(\ds \int_a^b \map f x \map {\phi_n} x \rd x\) \(=\) \(\ds \int_a^b \sum_{i \mathop \in I} a_i \map {\phi_i} x \map {\phi_n} x rd x\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in I} a_i \int_a^b \map {\phi_i} x \map {\phi_n} x \rd x\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in I} a_i \delta_{i n}\) Definition of Complete Orthonormal Set of Real Functions
\(\ds \) \(=\) \(\ds a_n\)

$\blacksquare$


Sources