Set Equation: Union
Theorem
Let $A$ and $B$ be sets.
Consider the set equation:
- $A \cup X = B$
The solution set of this is given by:
- $X = \begin {cases} \O & : A \nsubseteq B \\ \set {\paren {B \setminus A} \cup Y: Y \subseteq A} & : \text {otherwise} \end {cases}$
Proof
In the first case $A$ is a not a subset of $B$.
So there exists an $x \in A$ such that $x \notin B$.
By the definition of union:
- $\forall x: x \in A \implies x \in A \cup X$
Hence the solution set is empty.
In the second case, suppose $A$ is a subset of $B$.
![]() | Work In Progress You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by completing it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{WIP}} from the code. |
In particular, suppose $A$ is a subset of $B$, and $B$ is the empty set.
- $A = \O$.
Then, by hypothesis:
\(\ds A \cup X\) | \(=\) | \(\ds B\) | by hypothesis | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \O \cup X\) | \(=\) | \(\ds \O\) | by hypothesis and result shown above | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds X\) | \(=\) | \(\ds \O\) | Union of Empty Set |
Hence, by Empty Set is Subset of All Sets:
- $X = \O \in \set {\paren {B \setminus A} \cup Y: Y \subseteq A}$
as required.
Suppose $A$ is a subset of $B$ and $B$ is non-empty.
By definition of a subset:
- $A \subseteq B \iff \forall x: \paren {x \in A \implies x \in B}$
Then, by hypothesis and the Axiom of Extension:
- $\forall x: \paren {x \in A \cup X \iff x \in B }$
It follows that:
- $\forall x: x \notin B \implies \neg {\paren {\paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} } }$
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies x \in B$
Then:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies x \in \paren{\paren{B \cup A } \setminus A }$
By Set is Subset of Itself and the definition of existential quantifier:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists A \subseteq A: x \in \paren{\paren{B \cup A } \setminus A }$
Then, let $Y \subseteq A$ be arbitrary, such that:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: x \in \paren{\paren{B \cup Y } \setminus A }$
By definition of set union:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{x \in Y \setminus A } \lor \paren{x \in B \setminus A }$
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{x \in Y \setminus A } \lor \paren{x \in Y } \lor \paren{x \in B \setminus A }$
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{x \in Y \setminus A } \lor \paren{x \in B \setminus A } \lor \paren{x \in Y }$
By definition of set complement:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{\paren{\paren {x \in Y } \land \paren{x \notin A } } \lor \paren{x \in B \land x \notin A } \lor \paren{x \in Y } }$
By Double Negation/Double Negation Elimination/Proof Rule:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{\neg \paren{\neg \paren{\paren {x \in Y } \land \paren{x \notin A } } } \lor \paren{x \in B \land x \notin A } \lor \paren{x \in Y } }$
By definition of implication:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{\neg \paren{\paren {x \in Y } \land \paren{x \notin A } } \implies \paren{x \in B \land x \notin A } \lor \paren{x \in Y } }$
By De Morgan's Laws for Set Complement of Intersection:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{ \neg \paren{\paren {x \in Y } \lor \paren{x \in A } } \implies \paren{x \in B \land x \notin A } \lor \paren{x \in Y } }$
By definition of set complement:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{ \neg \paren{\paren {x \in Y } \lor \paren{x \in A } } \implies \paren{x \in B \setminus A } \lor \paren{x \in Y } }$
By definition of implication:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{\paren{x \in Y \implies x \in A} \implies \paren{x \in B \setminus A } \lor \paren{x \in Y } }$
By definition of set union:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{\paren{x \in Y \implies x \in A} \implies x \in \set{ \paren{ B \setminus A } \cup Y } }$
By definition of subset:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies \exists Y \subseteq A: \paren{ x \in Y \implies x \in \set{ \paren{ B \setminus A } \cup Y } }$
By definition of set-builder notation:
- $\forall x: \paren {x \in A \implies x \in B} \land \paren {x \in A \cup X \iff x \in B} \implies x \in \set {\paren{B \setminus A} \cup Y :Y \subseteq A }$
Hence:
- $\forall X: A \subseteq B \land \paren {A \cup X = B} \implies X = \set {\paren {B \setminus A} \cup Y :Y \subseteq A }$
as required.
$\Box$
![]() | This theorem requires a proof. In particular: formalising the second case You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |