Simple Variable End Point Problem/Endpoints on Curves
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $y$, $F$, $\phi$ and $\psi$ be smooth real functions.
Let $J = J \sqbrk y$ be a functional of the form:
- $\ds J \sqbrk y = \int_{x_0}^{x_1} \map F {x, y, y'} \rd x$
Let $P_0$, $P_1$ be the endpoints of the curve $y$.
Suppose $P_0$, $P_1$ lie on curves $y = \map {\phi} x$, $y = \map {\psi} x$.
Then the extremum of $J \sqbrk y$ is a curve which satisfies the following system of Euler and transversality equations:
\(\ds F_y - \dfrac \d {\d x} F_{y'}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \bigvalueat {\paren {F + \paren {\phi' - y'} F_{y'} } } {x \mathop = x_0}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \bigvalueat {\paren {F + \paren {\psi' - y'} F_{y'} } } {x \mathop = x_1} = 0\) | \(=\) | \(\ds 0\) |
![]() | This article, or a section of it, needs explaining. In particular: meaning of square brackets You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Proof
By general variation of integral functional with $n = 1$:
- $\ds \delta J \sqbrk{y; h} = \int_{x_0}^{x_1} \intlimits {\paren {F_y - \dfrac \d {\d x} F_{y'} } \map h x + F_{y'} \delta y} {x \mathop = x_0} {x \mathop = x_1} + \bigintlimits {\paren {F - y'F_{y'} } \delta x} {x \mathop = x_0} {x \mathop = x_1}$
Since the curve $y = \map y x$ is an extremum of $\map J y$, the integral term vanishes:
- $\ds \delta J \sqbrk {y; h} = \bigintlimits {F_{y'} \delta y} {x \mathop = x_0} {x \mathop = x_1} + \bigintlimits {\paren {F - y'F_{y'} } \delta x} {x \mathop = x_0} {x \mathop = x_1}$
According to Taylor's Theorem:
- $\delta y_0 = \paren {\map {\phi'} {x_0} + \epsilon_0} \delta x_0$
- $\delta y_1 = \paren {\map {\phi'} {x_1} + \epsilon_1} \delta x_1$
where $\epsilon_0 \to 0$ as $\delta x_0 \to 0$ and $\epsilon_1 \to 0$ as $\delta x_1 \to 0$.
![]() | This article is incomplete. In particular: add a figure; explain better You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by expanding it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Stub}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Substitution of $\delta y_0$ and $\delta y_1$ into $\delta J$ leads to:
- $\delta J \sqbrk {y; h} = \bigvalueat {\paren {F_{y'} \psi' + F - y' F_{y'} } } {x \mathop = x_1} \delta x_1 - \bigvalueat {\paren {F_{y'} \psi' + F - y' F_{y'} } } {x \mathop = x_0} \delta x_0$
$y = \map y x$ is an extremal of $J \sqbrk y$, thus $\delta J = 0$.
$\delta x_0$ and $\delta x_1$ are independent increments.
Hence both remaining terms in $\delta J$ vanish independently.
$\blacksquare$
Sources
- 1963: I.M. Gelfand and S.V. Fomin: Calculus of Variations ... (previous) ... (next): $\S 3.14$: End Points Lying on Two Given Lines or Surfaces