Subgroup is Normal iff Contains Conjugate Elements
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group whose identity is $e$.
Let $N$ be a subgroup of $G$.
Then $N$ is normal in $G$ if and only if:
\(\text {(1)}: \quad\) | \(\ds \forall g \in G: \, \) | \(\ds n \in N\) | \(\iff\) | \(\ds g \circ n \circ g^{-1} \in N\) | ||||||||||
\(\text {(2)}: \quad\) | \(\ds \forall g \in G: \, \) | \(\ds n \in N\) | \(\iff\) | \(\ds g^{-1} \circ n \circ g \in N\) |
Proof
By definition, a subgroup is normal in $G$ if and only if:
- $\forall g \in G: g \circ N = N \circ g$
Necessary Condition
Suppose that $g \circ N = N \circ g$, by definition 1 of normality in $G$.
Let $n \in N$.
Then:
\(\ds g \circ n\) | \(\in\) | \(\ds N \circ g\) | Definition of Coset | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \exists n_1 \in N: \, \) | \(\ds g \circ n\) | \(=\) | \(\ds n_1 \circ g\) | Definition of Coset | |||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds g \circ n \circ g^{-1}\) | \(=\) | \(\ds n_1 \circ g \circ g^{-1}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds n_1 \circ e\) | Definition of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds n_1\) | Definition of Identity Element | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds g \circ n \circ g^{-1}\) | \(\in\) | \(\ds N\) | Definition of $n_1$ |
$\Box$
Sufficient Condition
Suppose that:
- $\forall g \in G: \paren {n \in N \iff g \circ n \circ g^{-1} \in N}$
Let $g \circ n \circ g^{-1} \in N$.
\(\ds \exists n_1 \in N: \, \) | \(\ds g \circ n \circ g^{-1}\) | \(=\) | \(\ds n_1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds g \circ n\) | \(=\) | \(\ds n_1 \circ g\) | Group Axioms | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds g \circ n\) | \(\in\) | \(\ds N \circ g\) | Definition of Coset | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds g \circ N\) | \(\subseteq\) | \(\ds N \circ g\) | Definition of Subset |
Similarly:
- $n \circ g \in N \circ g \implies N \circ G = g \circ N$
\(\ds \exists n_1 \in N: \, \) | \(\ds g \circ n \circ g^{-1}\) | \(=\) | \(\ds n_2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds n \circ g^{-1}\) | \(=\) | \(\ds g^{-1} \circ n_2\) | Group Axioms | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds n \circ g^{-1}\) | \(\in\) | \(\ds g^{-1} \circ N\) | Definition of Coset | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds N \circ g^{-1}\) | \(\subseteq\) | \(\ds g^{-1} \circ N\) | Definition of Subset |
As $g$ is arbitrary, then so is $g^{-1}$.
Thus:
- $N \circ g \subseteq g \circ N$
By definition of set equality:
- $g \circ N = N \circ g$
Also see
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 6.6$. Normal subgroups
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.10$: Theorem $26$
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): $\text{II}$: Morphisms
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 49.3$ Normal subgroups
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): $\S 7$: Definition $7.3$