Subset of Module Containing Identity is Linearly Dependent
Theorem
Let $G$ be a group whose identity is $e$.
Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.
Let $\struct {G, +_G, \circ}_R$ be an $R$-module.
Let $H \subseteq G$ such that $e \in H$.
Then $H$ is a linearly dependent set.
Proof
From Scalar Product with Identity, $\forall \lambda: \lambda \circ e = e$.
Let $H \subseteq G$ such that $e \in H$.
Consider any sequence $\sequence {a_k}_{1 \mathop \le k \mathop \le n}$ in $H$ which includes $e$.
So, let $a_j = e$ for some $j \in \closedint 1 n$.
Let $c \in R \ne 0_R$.
Consider the sequence $\sequence {\lambda_k}_{1 \mathop \le k \mathop \le n}$ of elements of $R$ defined as:
- $\lambda_k = \begin {cases} c & : k \ne j \\ 0_R & : k= j \end {cases}$
Then:
\(\ds \sum_{k \mathop = 1}^n \lambda_k \circ a_k\) | \(=\) | \(\ds \lambda_1 \circ a_1 + \lambda_2 \circ a_2 + \cdots + \lambda_j \circ a_j + \cdots + \lambda_n \circ a_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0_R \circ a_1 + 0_R \circ a_2 + \cdots + c \circ e + \cdots + 0_R \circ a_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e + e + \cdots + e + \cdots + e\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e\) |
Thus there exists a sequence $\sequence {\lambda_k}_{1 \mathop \le k \mathop \le n}$ in which not all $\lambda_k = 0_R$ such that:
- $\ds \sum_{k \mathop = 1}^n \lambda_k \circ a_k = e$
Hence the result.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 27$. Subspaces and Bases
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $7$: Vector Spaces: $\S 33$. Definition of a Basis