Sum of Reciprocals of Squares Alternating in Sign/Proof 1
Jump to navigation
Jump to search
Theorem
\(\ds \dfrac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n + 1} } {n^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1^2} - \frac 1 {2^2} + \frac 1 {3^2} - \frac 1 {4^2} + \cdots\) |
Proof
Let $\map f x$ be the real function defined on $\openint 0 {2 \pi}$ as:
- $\map f x = \begin {cases} \paren {x - \pi}^2 & : 0 < x \le \pi \\ \pi^2 & : \pi < x < 2 \pi \end {cases}$
From Fourier Series: Square of x minus pi, Square of pi, its Fourier series can be expressed as:
- $(1): \quad \map f x \sim \ds \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \paren {\frac {2 \cos n x} {n^2} + \paren {\frac {\paren {-1}^n \pi} n + \frac {2 \paren {\paren {-1}^n - 1} } {\pi n^3} } \sin n x}$
We have that:
\(\ds \map f {\pi - 0}\) | \(=\) | \(\ds \paren {\pi - \pi}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \map f {\pi + 0}\) | \(=\) | \(\ds \pi^2\) |
where $\map f {\pi - 0}$ and $\map f {\pi + 0}$ denote the limit from the left and limit from the right respectively of $\map f \pi$.
It is apparent that $\map f x$ satisfies the Dirichlet conditions:
- $(\text D 1): \quad f$ is bounded on $\openint 0 {2 \pi}$
- $(\text D 2): \quad f$ has a finite number of local maxima and local minima.
- $(\text D 3): \quad f$ has $1$ discontinuity, which is finite.
Hence from Fourier's Theorem:
\(\ds \map f \pi\) | \(=\) | \(\ds \frac {\map f {\pi - 0} + \map f {\pi + 0} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {0 + \pi^2} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} 2\) |
Thus setting $x = \pi$ in $(1)$:
\(\ds \map f \pi\) | \(=\) | \(\ds \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \paren {\frac {2 \cos n \pi} {n^2} + \paren {\frac {\paren {-1}^n \pi} n + \frac {2 \paren {\paren {-1}^n - 1} } {\pi n^3} } \sin n \pi}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 2\) | \(=\) | \(\ds \frac {2 \pi^2} 3 + 2 \sum_{n \mathop = 1}^\infty \frac {\cos n \pi} {n^2}\) | Sine of Multiple of Pi | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 4\) | \(=\) | \(\ds \frac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n} {n^2}\) | Cosine of Multiple of Pi and simplification | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\frac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n} {n^2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n + 1} } {n^2}\) | changing sign and subsuming into powers of $-1$ |
$\blacksquare$
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 2$. Fourier Series: Example $1$