Sum of Reciprocals of Squares Alternating in Sign/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \dfrac {\pi^2} {12}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n + 1} } {n^2}\)
\(\ds \) \(=\) \(\ds \frac 1 {1^2} - \frac 1 {2^2} + \frac 1 {3^2} - \frac 1 {4^2} + \cdots\)


Proof

Let $\map f x$ be the real function defined on $\openint {-\pi} \pi$ as:

$\map f x = \pi^2 - x^2$


By Fourier Series: $\pi^2 - x^2$ over $\openint {-\pi} \pi$:

$\ds \pi^2 - x^2 \sim \frac {2 \pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {\cos n x} {n^2}$

for $x \in \openint {-\pi} \pi$.


Setting $x = 0$:

\(\ds \pi^2 - 0^2\) \(=\) \(\ds \frac {2 \pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {\cos 0} {n^2}\)
\(\ds \) \(=\) \(\ds \frac {2 \pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac 1 {n^2}\) Cosine of Zero is One
\(\ds \leadsto \ \ \) \(\ds \frac {\pi^2} {12}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac 1 {n^2}\) simplification
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n + 1} } {n^2}\) rearrangement

$\blacksquare$


Sources