Sum of Reciprocals of Squares of Odd Integers/Proof 6
Jump to navigation
Jump to search
Theorem
\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | \(=\) | \(\ds 1 + \dfrac 1 {3^2} + \dfrac 1 {5^2} + \dfrac 1 {7^2} + \dfrac 1 {9^2} + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\pi^2} 8\) |
Proof
Let $\map f x$ be the real function defined on $\openint 0 {2 \pi}$ as:
- $\map f x = \begin{cases} -\pi & : 0 < x \le \pi \\ x - \pi & : \pi < x < 2 \pi \end{cases}$
By Fourier Series: $-\pi$ over $\openint 0 \pi$, $x - \pi$ over $\openint \pi {2 \pi}$, its Fourier series can be expressed as:
- $\ds \map f x \sim \map S x = -\frac \pi 4 + \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {\cos \paren {2 r + 1} x} {\paren {2 r + 1}^2} - \sum_{n \mathop = 1}^\infty \frac {2 - \paren {-1}^n \sin n x} n$
Consider the point $x = \pi$.
\(\ds \map S \pi\) | \(=\) | \(\ds \frac 1 2 \paren {\lim_{x \mathop \to \pi^+} \map f x + \lim_{x \mathop \to \pi^-} \map f x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-\pi + \paren {\pi - \pi} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\frac \pi 2\) |
Thus:
\(\ds -\frac \pi 2\) | \(=\) | \(\ds -\frac \pi 4 + \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {\cos \paren {2 r + 1} \pi} {\paren {2 r + 1}^2} - \sum_{n \mathop = 1}^\infty \frac {2 - \paren {-1}^n \sin n \pi} n\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\frac \pi 4\) | \(=\) | \(\ds \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {\cos \paren {2 r + 1} \pi} {\paren {2 r + 1}^2}\) | Sine of Multiple of Pi and simplifying | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {-1} {\paren {2 r + 1}^2}\) | Cosine of Multiple of Pi and simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 8\) | \(=\) | \(\ds \sum_{r \mathop = 1}^\infty \frac 1 {\paren {2 r - 1}^2}\) | multiplying both sides by $-\dfrac \pi 2$ and adjusting indices |
$\blacksquare$
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Exercises on Chapter $\text I$: $1$.