Sum of Reciprocals of Squares of Odd Integers
Theorem
\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | \(=\) | \(\ds 1 + \dfrac 1 {3^2} + \dfrac 1 {5^2} + \dfrac 1 {7^2} + \dfrac 1 {9^2} + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\pi^2} 8\) |
Proof 1
\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^2}\) | \(=\) | \(\ds \map \zeta 2\) | Definition of Riemann Zeta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n}^2} + \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 4 \sum_{n \mathop = 1}^\infty \frac 1 {n^2} + \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 4 \map \zeta 2 + \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) |
Hence:
\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | \(=\) | \(\ds \frac 3 4 \map \zeta 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 3 4 \cdot \frac{\pi^2} 6\) | Basel Problem | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} 8\) |
$\blacksquare$
Proof 2
Let $n$ be a positive integer.
\(\ds \int_0^1 \frac {x^{2 n + 1} } {\sqrt {1 - x^2} } \rd x\) | \(=\) | \(\ds \int_0^{\pi / 2} \sin^{2 n + 1} x \rd x\) | substituting $x \to \sin x$ | |||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \frac {2^{2 n} \paren {n!}^2} {\paren {2 n + 1}!}\) | Reduction Formula for Definite Integral of Power of Sine |
We have:
\(\ds \int_0^1 \frac {\arcsin x} {\sqrt {1 - x^2} } \rd x\) | \(=\) | \(\ds \int_0^1 \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \frac {x^{2 n + 1} } {\sqrt {1 - x^2} } \rd x\) | Power Series Expansion for Real Arcsine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \int_0^1 \frac {x^{2 n + 1} } {\sqrt {1 - x^2} } \rd x\) | Interchange of sum and integral is valid by Tonelli's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \frac {2^{2 n} \paren {n!}^2} {\paren {2 n + 1}!}\) | by $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {\paren {2 n + 1}^2}\) |
We also have:
\(\ds \int_0^1 \frac {\arcsin x} {\sqrt {1 - x^2} } \rd x\) | \(=\) | \(\ds \intlimits {\frac 1 2 \paren {\arcsin x}^2} 0 1\) | Fundamental Theorem of Calculus | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} 8\) |
So we can deduce:
- $\ds \sum_{n \mathop = 0}^\infty \frac 1 {\paren {2 n + 1}^2} = \frac {\pi^2} 8$
$\blacksquare$
Proof 3
This "proof" leads to a dead end. Its value lies in showing that this approach does not work.
\(\ds \) | \(\) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \int_0^1 \frac 1 {1 - x^2 y^2} \rd x \rd y\) | Sum of Reciprocals of Squares of Odd Integers as Double Integral | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \int_0^1 \frac 1 {\paren {1 + x y} \paren {1 - x y} } \rd x \rd y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \int_0^1 \frac 1 {2 \paren {1 + x y} } \rd x \rd y - \int_0^1 \int_0^1 \frac 1 {2 \paren {1 - x y} } \rd x \rd y\) | Primitive of Function of Constant Multiple, partial fraction expansion | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int_0^1 \intlimits {\frac {\map \ln {1 + x y} } x} 0 1 \rd x - \frac 1 2 \int_0^1 \intlimits {\frac {\map \ln {1 - x y} } x} 0 1 \rd x\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int_0^1 \paren {\frac {\map \ln {1 + x} } x - \frac {\ln 1} x} \rd x - \frac 1 2 \int_0^1 \paren {\frac {\map \ln {1 - x} } x - \frac {\ln 1} x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int_0^1 \frac 1 x \map \ln {\frac {1 + x} {1 - x} } \rd x\) | Sum of Logarithms | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \frac {\artanh x} x \rd x\) | Definition of Real Area Hyperbolic Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \frac 1 x \paren {x + \frac {x^3} 3 + \frac {x^5} 5 + \frac {x^7} 7 + \cdots} \rd x\) | Power Series Expansion for Real Area Hyperbolic Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^1 \paren {1 + \frac {x^2} 3 + \frac {x^4} 5 + \frac {x^6} 7 + \cdots} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \intlimits {x + \frac {x^3} 9 + \frac {x^5} {25} + \frac {x^7} {49} + \cdots} 0 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \frac 1 9 + \frac 1 {25} + \frac 1 {49} + \cdots\) | and a dead end is reached |
Proof 4
\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2n - 1}^2}\) | \(=\) | \(\ds \int_0^1 \int_0^1 \frac 1 {1 - x^2y^2} \rd x \rd y\) | Sum of Reciprocals of Squares of Odd Integers as Double Integral |
Applying the substitution:
- $\tuple {x, y} = \tuple {\dfrac {\sin u} {\cos v}, \dfrac {\sin v} {\cos u} }$
the Jacobian matrix is:
- $\mathbf J_{\mathbf f} := \begin{pmatrix} \dfrac \partial {\partial u} \dfrac {\sin u} {\cos v} & \dfrac \partial {\partial v} \dfrac {\sin u} {\cos v} \\ \dfrac \partial {\partial u} \dfrac {\sin v} {\cos u} & \dfrac \partial {\partial v} \dfrac {\sin v} {\cos u} \end{pmatrix}$
and the Jacobian determinant is:
\(\ds \size {\frac {\partial \tuple {x, y} } {\partial \tuple {u, v} } }\) | \(=\) | \(\ds \frac \partial {\partial u} \frac {\sin u} {\cos v} \frac \partial {\partial v} \frac {\sin v} {\cos u} - \frac \partial {\partial v} \frac {\sin u} {\cos v} \frac \partial {\partial u} \frac {\sin v} {\cos u}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\cos u \, \cos v} {\cos v \, \cos u} - \frac {\sin^2 u \, \sin^2 v} {\cos^2 v \, \cos^2 u}\) | Derivative of Secant Function, Derivative of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \tan^2 u \tan^2 v\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \rd x \rd y\) | \(=\) | \(\ds \paren {1 - \tan^2 u \tan^2 v} \rd u \rd v\) |
We have:
\(\ds 0\) | \(\le\) | \(\ds x\) | \(\ds \le 1\) | Integrating over the unit square | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \dfrac {\sin u} {\cos v}\) | \(\ds \le 1\) | $x = \dfrac {\sin u} {\cos v}$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \sin u\) | \(\ds \le \cos v\) | multiplying by $\cos v$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \sin u\) | \(\ds \le \map \sin {\dfrac \pi 2 - v}\) | Sine of Complement equals Cosine | |||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds u\) | \(\ds \le \dfrac \pi 2 - v\) | Arcsine of Zero is Zero and Definition of Inverse Sine |
and we have:
\(\ds 0\) | \(\le\) | \(\ds y\) | \(\ds \le 1\) | Integrating over the unit square | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \dfrac {\sin v} {\cos u}\) | \(\ds \le 1\) | $y = \dfrac {\sin v} {\cos u}$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \sin v\) | \(\ds \le \cos u\) | multiplying by $\cos u$ | |||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \sin v\) | \(\ds \le \map \sin {\dfrac \pi 2 - u}\) | Sine of Complement equals Cosine | |||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(\le\) | \(\ds v\) | \(\ds \le \dfrac \pi 2 - u\) | Arcsine of Zero is Zero and Definition of Inverse Sine |
Under this substitution, the image of the region $\closedint 0 1^2$, that is the unit square, is an isosceles triangle $\bigtriangleup$ with:
- base and height $\dfrac \pi 2$
- vertices: $\tuple {0, 0}; \tuple {0, \dfrac \pi 2}; \tuple {\dfrac \pi 2, 0}$
This gives us the region:
- $\set {\tuple {u, v}: u, v \ge 0 \land v \le \dfrac \pi 2 - u}$
By Change of Variables Theorem (Multivariable Calculus):
\(\ds \int_0^1 \int_0^1 \frac 1 {1 - x^2 y^2} \rd x \rd y\) | \(=\) | \(\ds \iint_{\bigtriangleup} \frac {1 - \tan^2 u \, \tan^2 v} {1 - \paren {\tan u \, \tan v}^2} \rd u \rd v\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \iint_{\bigtriangleup} \rd u \rd v\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int_0^{\frac \pi 2} \int_0^{\frac \pi 2} \rd u \rd v\) | Area of Triangle in Terms of Side and Altitude | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {\frac \pi 2}^2\) | Primitive of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} 8\) |
$\blacksquare$
Proof 5
By Fourier Series of Absolute Value of x, for $x \in \closedint {-\pi} \pi$:
- $\ds \size x = \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {\paren {2 n - 1} x} } {\paren {2 n - 1}^2}$
![]() | The validity of the material on this page is questionable. In particular: This formula is proved only for $x \in \openint {-\pi} \pi$. Probably you want to do $x\nearrow \pi$ making use of absolute convergent sum. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Questionable}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Setting $x = \pi$:
\(\ds \size \pi\) | \(=\) | \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {2 \pi n - \pi} } {\paren {2 n - 1}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {-\pi} } {\paren {2 n - 1}^2}\) | Sine and Cosine are Periodic on Reals | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\cos \pi} {\paren {2 n - 1}^2}\) | Cosine Function is Even | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {-1} {\paren {2 n - 1}^2}\) | Cosine of Multiple of Pi | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac \pi 2\) | \(=\) | \(\ds \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | Definition of Absolute Value and rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 8\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | multiplying through by $\dfrac \pi 4$ |
$\blacksquare$
Proof 6
Let $\map f x$ be the real function defined on $\openint 0 {2 \pi}$ as:
- $\map f x = \begin{cases} -\pi & : 0 < x \le \pi \\ x - \pi & : \pi < x < 2 \pi \end{cases}$
By Fourier Series: $-\pi$ over $\openint 0 \pi$, $x - \pi$ over $\openint \pi {2 \pi}$, its Fourier series can be expressed as:
- $\ds \map f x \sim \map S x = -\frac \pi 4 + \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {\cos \paren {2 r + 1} x} {\paren {2 r + 1}^2} - \sum_{n \mathop = 1}^\infty \frac {2 - \paren {-1}^n \sin n x} n$
Consider the point $x = \pi$.
\(\ds \map S \pi\) | \(=\) | \(\ds \frac 1 2 \paren {\lim_{x \mathop \to \pi^+} \map f x + \lim_{x \mathop \to \pi^-} \map f x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-\pi + \paren {\pi - \pi} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\frac \pi 2\) |
Thus:
\(\ds -\frac \pi 2\) | \(=\) | \(\ds -\frac \pi 4 + \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {\cos \paren {2 r + 1} \pi} {\paren {2 r + 1}^2} - \sum_{n \mathop = 1}^\infty \frac {2 - \paren {-1}^n \sin n \pi} n\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\frac \pi 4\) | \(=\) | \(\ds \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {\cos \paren {2 r + 1} \pi} {\paren {2 r + 1}^2}\) | Sine of Multiple of Pi and simplifying | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 \pi \sum_{r \mathop = 0}^\infty \frac {-1} {\paren {2 r + 1}^2}\) | Cosine of Multiple of Pi and simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 8\) | \(=\) | \(\ds \sum_{r \mathop = 1}^\infty \frac 1 {\paren {2 r - 1}^2}\) | multiplying both sides by $-\dfrac \pi 2$ and adjusting indices |
$\blacksquare$
Proof 7
By Half-Range Fourier Cosine Series for Identity Function over $\openint 0 \pi$:
- $\ds x = \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {2 n - 1} x} {\paren {2 n - 1}^2}$
for $x \in \openint 0 \pi$.
We have that:
- $\map f \pi = \map f {\pi - 2 \pi} = \map f {-\pi} = \pi$
and so:
- $\map f {\pi^-} = \map f {\pi^+}$
Hence we can set $x = \pi$:
\(\ds \pi\) | \(=\) | \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {2 n - 1} \pi} {\paren {2 n - 1}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {-1} {\paren {2 n - 1}^2}\) | Cosine of Multiple of Pi | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 8\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) | simplification |
$\blacksquare$
Also presented as
This result can also be presented as:
- $\ds \sum_{n \mathop = 0}^\infty \frac 1 {\paren {2 n + 1}^2} = \dfrac {\pi^2} 8$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Series involving Reciprocals of Powers of Positive Integers: $19.25$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $3 \cdotp 14159 \, 26535 \, 89793 \, 23846 \, 26433 \, 83279 \, 50288 \, 41972 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $3 \cdotp 14159 \, 26535 \, 89793 \, 23846 \, 26433 \, 83279 \, 50288 \, 41971 \ldots$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 21$: Series of Constants: Series Involving Reciprocals of Powers of Positive Integers: $21.25.$