# Surjective Monotone Function is Continuous

## Theorem

Let $X$ be an open set of $\R$.

Let $Y$ be a real interval.

Let $f: X \to Y$ be a surjective monotone real function.

Then $f$ is continuous on $X$.

## Proof

Without loss of generality, let $f$ be increasing.

Let $c \in X$.

From Limit of Monotone Real Function: Corollary, the one sided limits of monotone functions exist:

 $\ds L^-_c$ $=$ $\, \ds \lim_{x \mathop \to c^-} \map f x \,$ $\, \ds = \,$ $\ds \sup_{x \mathop < c} \map f x$ $\ds L^+_c$ $=$ $\, \ds \lim_{x \mathop \to c^+} \map f x \,$ $\, \ds = \,$ $\ds \inf_{x \mathop > c} \map f x$

and satisfy:

$L^-_c, L^+_c \in Y$
$L^-_c \le \map f c \le L^+_c$

Suppose that $\ds L = \lim_{x \mathop \to c} \map f x$ exists.

$L = L^-_c$

$L \le \map f c$

Similarly:

$L = L^+_c$

$L \ge \map f c$

Hence:

$\ds \lim_{x \mathop \to c} \map f x = \map f c$

proving continuity at $c$.

By assumption, $f$ is increasing.

Suppose $\ds \lim_{x \mathop \to c} \map f x$ does not exist.

Then from Discontinuity of Monotonic Function is Jump Discontinuity, there is a jump discontinuity at $c$.

Aiming for a contradiction, suppose $f$ has a jump discontinuity at $c$.

$L^-_c < y < L^+_c$

for some $y \in Y$.

By surjectivity, $y = \map f a$ for some $a \in X$.

Hence:

$L^-_c < \map f a < L^+_c$

If $a < c$ then $\map f a \le L^-_c$.

There is a similar contradiction if $a \ge c$.