Symbols:F

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

femto-

$\mathrm f$

The Système Internationale d'Unités symbol for the metric scaling prefix femto, denoting $10^{\, -15 }$, is $\mathrm { f }$.


Its $\LaTeX$ code is \mathrm {f} .


Hexadecimal

$\mathrm F$ or $\mathrm f$

The hexadecimal digit $15$.


Its $\LaTeX$ code is \mathrm F  or \mathrm f.


Function

$\map f x$

The letter $f$, along with $g$ and $h$, is frequently used to denote a general mapping or function, in particular a real function.


The $\LaTeX$ code for \(\map f x\) is \map f x .


Force

$f$


The usual symbol used to denote the force on a body is $f$.


Its $\LaTeX$ code is f .


Primitive

$\map F x$

Given a real function $f$, the primitive of $f$ is often denoted $F$:

$\map F x = \ds \int \map f x \rd x$


The $\LaTeX$ code for \(\map F x\) is \map F x .


Predicate

$F a$

Frequently used to denote a general unspecified predicate in the context of predicate logic, for example:

$F a$ represents:
$a$ has property $F$


The $\LaTeX$ code for \(F a\) is F a .


False

$\F$

Symbol generally used for falsehood.

A statement has a truth value of false if and only if what it says does not match the way that things are.


The $\LaTeX$ code for \(\F\) is \F .


Farad

$\mathrm F$

The symbol for the farad is $\mathrm F$.


Its $\LaTeX$ code is \mathrm F .


Faraday

$\mathrm F$

The symbol for the Faraday is $\mathrm F$.


Its $\LaTeX$ code is \mathrm F .


Galois Field

$\map \GF p$

Used to denote a Galois field of $p$ elements.


The $\LaTeX$ code for \(\map \GF p\) is \map \GF p .


Incomplete Elliptic Integral of the First Kind

$\map F {k, \phi}$


$\ds \map F {k, \phi} = \int \limits_0^\phi \frac {\d \phi} {\sqrt {1 - k^2 \sin^2 \phi} }$

is the incomplete elliptic integral of the first kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$\phi$, defined on the interval $0 \le \phi \le \pi / 2$.


The $\LaTeX$ code for \(\map F {k, \phi}\) is \map F {k, \phi} .


Previous  ... Next