Symbols:G

From ProofWiki
Jump to: navigation, search

Previous  ... Next

giga-

$\mathrm G$

The Système Internationale d'Unités metric scaling prefix denoting $10^{\, 9 }$.


Its $\LaTeX$ code is \mathrm {G} .

Sources


Group

$G$

Used to denote a general group.

In this context, frequently seen in the compound symbol $\left({G, \circ}\right)$ where $\circ$ represents an arbitrary binary operation.

The $\LaTeX$ code for \(\left({G, \circ}\right)\) is \left({G, \circ}\right) .


Function

$g \left({x}\right)$

The letter $g$, along with $f$ and $h$, is frequently used to denote a general mapping or function.

The $\LaTeX$ code for \(g \left({x}\right)\) is g \left({x}\right) .


Geometric Distribution

$X \sim \operatorname{G}_0 \left({p}\right)$

$X$ has the geometric distribution with parameter $p$.


The $\LaTeX$ code for \(X \sim \operatorname{G}_0 \left({p}\right)\) is X \sim \operatorname{G}_0 \left({p}\right) .


Shifted Geometric Distribution

$X \sim \operatorname{G}_1 \left({p}\right)$

$X$ has the shifted geometric distribution with parameter $p$.


The $\LaTeX$ code for \(X \sim \operatorname{G}_1 \left({p}\right)\) is X \sim \operatorname{G}_1 \left({p}\right) .


Generating Function

$G_A \left({z}\right)$


Let $A = \left \langle {a_n}\right \rangle$ be a sequence in $\R$.


Then $\displaystyle G_A \left({z}\right) = \sum_{n \mathop \ge 0} a_n z^n$ is called the generating function for the sequence $A$.


The $\LaTeX$ code for \(G_A \left({z}\right)\) is G_A \left({z}\right) .