Definition:SI Units
Jump to navigation
Jump to search
Definition
The SI Units are the elements of the International System of Units.
SI Base Units
Name | Unit symbol | Dimension | Symbol |
---|---|---|---|
metre | $\mathrm m$ | $\mathsf L$: Length | $l$ |
kilogram | $\mathrm {kg}$ | $\mathsf M$: Mass | $m$ |
second | $\mathrm s$ | $\mathsf T$: Time | $t$ |
ampere | $\mathrm A$ | $\mathsf I$: Electric Current | $I$ |
kelvin | $\mathrm K$ | $\Theta$: Temperature | $T$ |
candela | $\mathrm {cd}$ | $\mathsf J$: Luminous Intensity | $I_v$ |
mole | $\mathrm {mol}$ | $\mathsf N$: Amount of Substance | $n$ |
SI Supplementary Units
The supplementary SI units are as follows:
Name | Unit symbol | Dimension | Used for | Symbol |
---|---|---|---|---|
radian | $\mathrm {rad}$ | $\text {none}$ | plane angle | $\theta$ |
steradian | $\mathrm {sr}$ | $\text {none}$ | solid angle |
SI Derived Units
The units derived from the SI base units include the following:
Name of Unit | Unit symbol | Quantity measured | Dimension | Base units | Derivation |
---|---|---|---|---|---|
Square metre | $\mathrm m^2$ | Area | $\mathsf L^2$ | $\mathrm m^2$ | |
Cubic metre | $\mathrm m^3$ | Volume | $\mathsf L^3$ | $\mathrm m^3$ | |
Mechanics | |||||
Newton | $\mathrm N$ | Force | $\mathsf M \mathsf L \mathsf T^{-2}$ | $\mathrm {kg} \, \mathrm m \, \mathrm s^{-2}$ | Mass times acceleration |
Joule | $\mathrm J$ | Energy and work | $\mathsf M \mathsf L^2 \mathsf T^{-2}$ | $\mathrm {kg} \, \mathrm m^2 \, \mathrm s^{-2}$ | $\mathrm N \, \mathrm m$ |
Watt | $\mathrm W$ | Power | $\mathsf M \mathsf L^2 \mathsf T^{-3}$ | $\mathrm {kg} \, \mathrm m^2 \, \mathrm s^{-3}$ | $\mathrm J \, \mathrm s^{-1}$ or $\mathrm C \, \mathrm V$ |
Electricity | |||||
Coulomb | $\mathrm C$ | Electric Charge | $\mathsf I \mathsf T$ | $\mathrm A \, \mathrm s$ | Current times time |
Volt | $\mathrm V$ | Electric Potential | $\mathsf M \mathsf L^2 \mathsf T^{−3} \mathsf I^{−1}$ | $\mathrm {kg} \, \mathrm m^2 \mathrm s^{-3} \mathrm A^{-1}$ | $\mathrm J \, \mathrm C^{-1}$ or $\mathrm W \, \mathrm A^{-1}$ |
Ohm | $\Omega$ | Resistance | $\mathsf {M L}^2 \mathsf T^{−3} \mathsf I^{−2}$ | $\mathrm {kg} \, \mathrm m^2 \mathrm s^{-3} \mathrm A^{-2}$ | $\mathrm V \, \mathrm A^{-1}$ |
Farad | $\mathrm F$ | Capacitance | $\mathsf M^{-1} \mathsf L^{-2} \mathsf T^4 \mathsf I^2$ | $\mathrm {kg}^{-1} \, \mathrm m^{-2} \, \mathrm s^4 \mathrm A^2$ | $\mathrm C \, \mathrm V^{-1}$ |
$\mathrm V / \mathrm m$ | Electric Field Strength | $\mathsf {M L T}^{-3} \mathsf I^{-1}$ | $\mathrm {kg} \, \mathrm m \, \mathrm s^{-3} \mathrm A^{-1}$ | $\mathrm V \, \mathrm m^{-1}$ or $\mathrm N \, \mathrm C^{-1}$ | |
$\mathrm C / \mathrm m^2$ | Electric Flux Density | $\mathsf I \mathsf T \mathsf L^{-2}$ | $\mathrm A \, \mathrm s \, \mathrm m^{-2}$ | $\mathrm C \, \mathrm m^{-2}$ | |
Magnetism | |||||
Tesla | $\mathrm T$ | Magnetic Flux Density | $\mathsf {M T}^{-2} \mathsf I^{-1}$ | $\mathrm {kg} \, \mathrm s^{-2} \mathrm A^{-1}$ | $\mathrm N \, \mathrm m^{-1} \mathrm A^{-1}$ or $\mathrm {Wb} \, \mathrm m^{-2}$ |
Weber | $\mathrm {Wb}$ | Magnetic Flux | $\mathsf M \mathsf L^2 \mathsf T^{-2} \mathsf I^{-1}$ | $\mathrm {kg} \, \mathrm m^2 \, \mathrm s^{-2} \mathrm A^{-1}$ | $\mathrm T \, \mathrm m^2$ or $\mathrm V \, \mathrm s$ |
Henry | $\mathrm H$ | Inductance | $\mathsf {M L}^2 \mathsf T^{-2} \mathsf I^{-2}$ | $\mathrm {kg} \, \mathrm m^2 \, \mathrm s^{-2} \mathrm A^{-2}$ | $\mathrm {Wb} \, \mathrm A^{-1}$ or $\mathrm V \, \mathrm s \, \mathrm A^{-1}$ |
$\mathrm A / \mathrm m$ | Magnetic Field Strength | $\mathsf {I L}^{-1}$ | $\mathrm A \, \mathrm m^{-1}$ | $\mathrm A \, \mathrm m^{-1}$ or $\mathrm H / \mu$ | |
$\mathrm A / \mathrm m$ | Intensity of Magnetization | $\mathsf {I L}^{-1}$ | $\mathrm A \, \mathrm m^{-1}$ | $\mathrm A \, \mathrm m^{-1}$ or $\mathrm H / \mu$ |
This article is complete as far as it goes, but it could do with expansion. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Expand}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Also see
Historical Note
The SI units originated in the work done by Joseph Louis Lagrange to establish a decimal system for weights and measures.
Linguistic Note
The abbreviation SI in the term SI units is from the French Le Système International d'Unités (the International System of Units).
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $2$. Physical Constants and Conversion Factors
- 1976: Ralph J. Smith: Circuits, Devices and Systems (3rd ed.) ... (next): Chapter $1$: Electrical Quantities: Definitions and Laws: The International System of Units
- 1990: I.S. Grant and W.R. Phillips: Electromagnetism (2nd ed.) ... (previous) ... (next): Chapter $1$: Force and energy in electrostatics: $1.1$ Electric Charge
- 1990: I.S. Grant and W.R. Phillips: Electromagnetism (2nd ed.) ... (previous) ... (next): Appendix $\text A$: Units
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): SI units
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): SI units