Symbols:Analysis/Norm
< Symbols:Analysis(Redirected from Symbols:Norm)
Jump to navigation
Jump to search
Norm
- $\norm z$
Let $\struct {R, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_R$.
Let $V$ be a vector space over $R$, with zero $0_V$.
A norm on $V$ is a map from $V$ to the nonnegative reals:
- $\norm{\,\cdot\,}: V \to \R_{\ge 0}$
satisfying the (vector space) norm axioms:
\((\text N 1)\) | $:$ | Positive Definiteness: | \(\ds \forall x \in V:\) | \(\ds \norm x = 0 \) | \(\ds \iff \) | \(\ds x = \mathbf 0_V \) | |||
\((\text N 2)\) | $:$ | Positive Homogeneity: | \(\ds \forall x \in V, \lambda \in R:\) | \(\ds \norm {\lambda x} \) | \(\ds = \) | \(\ds \norm {\lambda}_R \times \norm x \) | |||
\((\text N 3)\) | $:$ | Triangle Inequality: | \(\ds \forall x, y \in V:\) | \(\ds \norm {x + y} \) | \(\ds \le \) | \(\ds \norm x + \norm y \) |
The $\LaTeX$ code for \(\norm z\) is \norm z
.
Sources
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $7$: Common signs and symbols: norm
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $14$: Symbols