Symbols:Analysis
Symbols used in Analysis
Norm
- $\norm z$
Let $\struct {R, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_R$.
Let $V$ be a vector space over $R$, with zero $0_V$.
A norm on $V$ is a map from $V$ to the nonnegative reals:
- $\norm{\,\cdot\,}: V \to \R_{\ge 0}$
satisfying the (vector space) norm axioms:
\((\text N 1)\) | $:$ | Positive Definiteness: | \(\ds \forall x \in V:\) | \(\ds \norm x = 0 \) | \(\ds \iff \) | \(\ds x = \mathbf 0_V \) | |||
\((\text N 2)\) | $:$ | Positive Homogeneity: | \(\ds \forall x \in V, \lambda \in R:\) | \(\ds \norm {\lambda x} \) | \(\ds = \) | \(\ds \norm {\lambda}_R \times \norm x \) | |||
\((\text N 3)\) | $:$ | Triangle Inequality: | \(\ds \forall x, y \in V:\) | \(\ds \norm {x + y} \) | \(\ds \le \) | \(\ds \norm x + \norm y \) |
The $\LaTeX$ code for \(\norm z\) is \norm z
.
Limit
- $x \to 0$
- $x \to a$
- $x \to \infty$
Used to denote the statement that $a$ tends to the limit $0$, $a$ or $\infty$.
The $\LaTeX$ code for \(x \to 0\) is x \to 0
.
The $\LaTeX$ code for \(x \to a\) is x \to a
.
The $\LaTeX$ code for \(x \to \infty\) is x \to \infty
.
Asymptotic Equality
- $\map f x \sim \map g x$
Denotes that $\map f x$ is asymptotically equal to $\map g x$.
The $\LaTeX$ code for \(\map f x \sim \map g x\) is \map f x \sim \map g x
.
Integral Sign
- $\ds \int$
The integral sign.
The $\LaTeX$ code for \(\ds \int\) is \ds \int
.
Multiple Integral
- $\ds \iint$
- $\ds \iiint$
- $\ds \iiiint$
- $\ds \idotsint$
The $\LaTeX$ code for \(\ds \iint\) is \ds \iint
.
The $\LaTeX$ code for \(\ds \iiint\) is \ds \iiint
.
The $\LaTeX$ code for \(\ds \iiiint\) is \ds \iiiint
.
The $\LaTeX$ code for \(\ds \idotsint\) is \ds \idotsint
.