T1 Property is Hereditary
Jump to navigation
Jump to search
Theorem
Let $T = \struct {S, \tau}$ be a topological space which is a $T_1$ (Fréchet) space.
Let $T_H = \struct {H, \tau_H}$, where $\O \subset H \subseteq S$, be a subspace of $T$.
Then $T_H$ is a $T_1$ (Fréchet) space.
Proof
Let $T$ be a $T_1$ (Fréchet) space.
That is:
- $\forall x, y \in S$ such that $x \ne y$, both:
- $\exists U \in \tau: x \in U, y \notin U$
- and:
- $\exists U \in \tau: y \in U, x \notin U$
We have that the set $\tau_H$ is defined as:
- $\tau_H := \set {U \cap H: U \in \tau}$
Let $x, y \in H$ such that $x \ne y$.
Then as $x, y \in S$:
- $\exists U \in \tau: x \in U, y \notin U$
and:
- $\exists U \in \tau: y \in U, x \notin U$
Then both:
- $U \cap H \in \tau_H: x \in U \cap H, y \notin U \cap H$
and:
- $U \cap H \in \tau_H: y \in U \cap H, x \notin U \cap H$
and so the $T_1$ axiom is satisfied.
$\blacksquare$
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text I$: Basic Definitions: Section $2$: Separation Axioms: Functions, Products, and Subspaces