Tangent of Right Angle

From ProofWiki
Jump to navigation Jump to search


$\tan 90 \degrees = \tan \dfrac \pi 2$ is undefined

where $\tan$ denotes tangent.


From Tangent is Sine divided by Cosine:

$\tan \theta = \dfrac {\sin \theta} {\cos \theta}$

When $\cos \theta = 0$, $\dfrac {\sin \theta} {\cos \theta}$ can be defined only if $\sin \theta = 0$.

But there are no such $\theta$ such that both $\cos \theta = 0$ and $\sin \theta = 0$.

When $\theta = \dfrac \pi 2$, $\cos \theta = 0$.

Thus $\tan \theta$ is undefined at this value.


Also defined as

Some sources give that:

$\tan 90 \degrees = \infty$

but this naïve approach is overly simplistic and cannot be backed up with mathematical rigour.

Also see