Triangle Inequality/Real Numbers/Proof 1
Jump to navigation
Jump to search
Theorem
Let $x, y \in \R$ be real numbers.
Let $\size x$ denote the absolute value of $x$.
Then:
- $\size {x + y} \le \size x + \size y$
Proof
\(\ds \size {x + y}^2\) | \(=\) | \(\ds \paren {x + y}^2\) | Square of Real Number is Non-Negative | |||||||||||
\(\ds \) | \(=\) | \(\ds x^2 + 2 x y + y^2\) | Square of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \size x^2 + 2 x y + \size y^2\) | Square of Real Number is Non-Negative | |||||||||||
\(\ds \) | \(\le\) | \(\ds \size x^2 + 2 \size {x y} + \size y^2\) | Negative of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \size x^2 + 2 \size x \cdot \size y + \size y^2\) | Absolute Value Function is Completely Multiplicative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\size x + \size y}^2\) | Square of Sum |
Then by Order is Preserved on Positive Reals by Squaring:
- $\size {x + y} \le \size x + \size y$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.17$