Viète's Formulas/Examples/Quartic
< Viète's Formulas | Examples
Jump to navigation
Jump to search
Example of Use of Viète's Formulas
Consider the quartic equation:
- $x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0$
Let its roots be denoted $x_1$, $x_2$, $x_3$ and $x_4$.
Then:
\(\ds x_1 + x_2 + x_3 + x_4\) | \(=\) | \(\ds -a_1\) | ||||||||||||
\(\ds x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_1 + x_1 x_3 + x_2 x_4\) | \(=\) | \(\ds a_2\) | ||||||||||||
\(\ds x_1 x_2 x_3 + x_2 x_3 x_4 + x_1 x_2 x_4 + x_1 x_3 x_4\) | \(=\) | \(\ds -a_3\) | ||||||||||||
\(\ds x_1 x_2 x_3 x_4\) | \(=\) | \(\ds a_4\) |
Proof
A specific instance of Viète's Formulas for $n = 4$.
$\blacksquare$
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.8$ Algebraic Equations: Solution of Quartic Equations: $3.8.3$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 9$: Solutions of Algebraic Equations: Quartic Equation: $x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0$: $9.8$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 5$: Solutions of Algebraic Equations: Quartic Equation: $x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0$: $5.8.$