Viète's Formulas/Examples
Jump to navigation
Jump to search
Examples of Use of Viète's Formulas
Sum of Roots of Quadratic Equation
Let $P$ be the quadratic equation $a x^2 + b x + c = 0$.
Let $\alpha$ and $\beta$ be the roots of $P$.
Then:
- $\alpha + \beta = -\dfrac b a$
Product of Roots of Quadratic Equation
Let $P$ be the quadratic equation $a x^2 + b x + c = 0$.
Let $\alpha$ and $\beta$ be the roots of $P$.
Then:
- $\alpha \beta = \dfrac c a$
Coefficients of Cubic
Consider the cubic equation:
- $x^3 + a_1 x^2 + a_2 x + a_3 = 0$
Let its roots be denoted $x_1$, $x_2$ and $x_3$.
Then:
\(\ds x_1 + x_2 + x_3\) | \(=\) | \(\ds -a_1\) | ||||||||||||
\(\ds x_1 x_2 + x_2 x_3 + x_3 x_1\) | \(=\) | \(\ds a_2\) | ||||||||||||
\(\ds x_1 x_2 x_3\) | \(=\) | \(\ds -a_3\) |
Coefficients of Quartic
Consider the quartic equation:
- $x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0$
Let its roots be denoted $x_1$, $x_2$, $x_3$ and $x_4$.
Then:
\(\ds x_1 + x_2 + x_3 + x_4\) | \(=\) | \(\ds -a_1\) | ||||||||||||
\(\ds x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_1 + x_1 x_3 + x_2 x_4\) | \(=\) | \(\ds a_2\) | ||||||||||||
\(\ds x_1 x_2 x_3 + x_2 x_3 x_4 + x_1 x_2 x_4 + x_1 x_3 x_4\) | \(=\) | \(\ds -a_3\) | ||||||||||||
\(\ds x_1 x_2 x_3 x_4\) | \(=\) | \(\ds a_4\) |
Two Numbers whose Sum is $4$ and whose Product is $8$
Let $z_1$ and $z_2$ be two numbers whose sum is $4$ and whose product is $8$.
Then:
\(\ds z_1\) | \(=\) | \(\ds 2 + 2 i\) | ||||||||||||
\(\ds z_2\) | \(=\) | \(\ds 2 - 2 i\) |
Cubic with all Equal Roots
The coefficient of $x$ in the expansion of cubic $\paren {x - 1}^3$ is $3$.
Monic Polynomial Formulas
Let:
- $\ds \map P x = x^N + \sum_{k \mathop = 0}^{N - 1} b_k x^k$
be a monic polynomial of degree $N$.
Let $U$ be the set of $N$ roots of equation $\map P x = 0$.
Then:
- $b_k = \paren {-1}^{N - k} \map {e_{N - k} } U, \quad 0 \le k \le N - 1$
where $\map {e_m} U$ denotes an elementary symmetric function.