Zero Vector is Orthogonal to All Vectors

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf V$ be a vector space of $n$ dimensions.

Let $\bszero \in \mathbf V$ be the zero vector.

Let $\mathbf a \in \mathbf V$ be an arbitrary vector in $\mathbf V$


Then $\bszero$ is orthogonal to $\mathbf a$.


Proof

By definition, $\mathbf a$ and $\mathbf b$ are orthogonal if and only if their dot product is zero:

$\mathbf a \cdot \mathbf b = 0$


We have:

\(\ds \mathbf a\) \(=\) \(\ds \sum_{k \mathop = 1}^n a_k \mathbf e_k\)
\(\ds \mathbf b\) \(=\) \(\ds \sum_{k \mathop = 1}^n b_k \mathbf e_k\)

where $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ is the standard ordered basis of $\mathbf V$.


By definition of dot product:

$\ds \mathbf a \cdot \mathbf b = \sum_{k \mathop = 1}^n a_k b_k$


By definition of zero vector:

\(\ds \bszero\) \(=\) \(\ds \sum_{k \mathop = 1}^n 0 \mathbf e_k\)

Hence:

\(\ds \bszero \cdot \mathbf a\) \(=\) \(\ds \sum_{k \mathop = 1}^n 0 \times a_k\)
\(\ds \) \(=\) \(\ds 0\)

Hence the result.

$\blacksquare$


Sources