Complex Modulus of Real Number equals Absolute Value
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a real number.
Then the complex modulus of $x$ equals the absolute value of $x$.
Proof
Let $x = x + 0 i \in \R$.
Then:
\(\ds \cmod {x + 0 i}\) | \(=\) | \(\ds \sqrt {x^2 + 0^2}\) | Definition of Complex Modulus | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {x^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size x\) | Definition 2 of Absolute Value |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1.2$. The Algebraic Theory