# Addition of Coordinates on Cartesian Plane under Chebyshev Distance is Continuous Function

## Theorem

Let $\R^2$ be the real number plane.

Let $d_\infty$ be the Chebyshev distance on $\R^2$.

Let $f: \R^2 \to \R$ be the real-valued function defined as:

$\forall \left({x_1, x_2}\right) \in \R^2: f \left({x_1, x_2}\right) = x_1 + x_2$

Then $f$ is continuous.

## Proof

First we note that:

 $\displaystyle \left\vert{\left({x_1 + x_2}\right) - \left({y_1 + y_2}\right)}\right\vert$ $=$ $\displaystyle \left\vert{\left({x_1 - y_1}\right) + \left({x_2 - y_2}\right)}\right\vert$ $\displaystyle$ $\le$ $\displaystyle \left\vert{x_1 - y_1}\right\vert + \left\vert{x_2 - y_2}\right\vert$ Triangle Inequality for Real Numbers $(1):\quad$ $\displaystyle$ $\le$ $\displaystyle 2 \max \left\{ {\left\vert{x_1 - y_1}\right\vert, \left\vert{x_2 - y_2}\right\vert}\right\}$

Let $\epsilon \in \R_{>0}$.

Let $x = \left({x_1, x_2}\right) \in \R^2$.

Let $\delta = \dfrac \epsilon 2$.

Then:

 $\, \displaystyle \forall y = \left({y_1, y_2}\right) \in \R^2: \,$ $\displaystyle d_\infty \left({x, y}\right)$ $<$ $\displaystyle \delta$ $\displaystyle \implies \ \$ $\displaystyle \max \left\{ {\left\vert{x_1 - y_1}\right\vert, \left\vert{x_2 - y_2}\right\vert}\right\}$ $<$ $\displaystyle \delta$ Definition of Chebyshev Distance $\displaystyle \implies \ \$ $\displaystyle 2 \max \left\{ {\left\vert{x_1 - y_1}\right\vert, \left\vert{x_2 - y_2}\right\vert}\right\}$ $<$ $\displaystyle \epsilon$ Definition of $\epsilon$ $\displaystyle \implies \ \$ $\displaystyle \left\vert{\left({x_1 + x_2}\right) - \left({y_1 + y_2}\right)}\right\vert$ $<$ $\displaystyle \epsilon$ from $(1)$ $\displaystyle \implies \ \$ $\displaystyle \left\vert{f \left({x}\right) - f \left({y}\right)}\right\vert$ $<$ $\displaystyle \epsilon$ Definition of $f$ $\displaystyle \implies \ \$ $\displaystyle d \left({f \left({x}\right), f \left({y}\right)}\right)$ $<$ $\displaystyle \epsilon$ Definition of Usual Metric on $\R$

Thus it has been demonstrated that:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall y \in \R^2: d_\infty \left({x, y}\right) < \delta \implies d \left({f \left({x}\right), f \left({y}\right)}\right) < \epsilon$

Hence by definition of continuity at a point, $f$ is continuous at $x$.

As $x$ was chosen arbitrarily, it follows that $f$ is continuous for all $x \in \R^2$.

The result follows by definition of continuous mapping.

$\blacksquare$