Category:Continuous Mappings on Metric Spaces

From ProofWiki
Jump to navigation Jump to search

This category contains results about Continuous Mappings on Metric Spaces.


Let $M_1 = \left({A_1, d_1}\right)$ and $M_2 = \left({A_2, d_2}\right)$ be metric spaces.

Let $f: A_1 \to A_2$ be a mapping from $A_1$ to $A_2$.

Let $a \in A_1$ be a point in $A_1$.


Continuous at a Point

$f$ is continuous at (the point) $a$ (with respect to the metrics $d_1$ and $d_2$) if and only if:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall x \in A_1: \map {d_1} {x, a} < \delta \implies \map {d_2} {\map f x, \map f a} < \epsilon$

where $\R_{>0}$ denotes the set of all strictly positive real numbers.


Continuous on a Space

$f$ is continuous from $\left({A_1, d_1}\right)$ to $\left({A_2, d_2}\right)$ if and only if it is continuous at every point $x \in A_1$.

Subcategories

This category has only the following subcategory.

Pages in category "Continuous Mappings on Metric Spaces"

The following 21 pages are in this category, out of 21 total.