Axiom:Tarski's Axioms
Axioms
Tarski's Axioms are a series of axioms whose purpose is to provide a rigorous basis for the definition of Euclidean geometry entirely within the framework of first order logic.
In the following:
- $\equiv$ denotes the relation of equidistance.
- $\mathsf{B}$ denotes the relation of betweenness.
The axioms are as follows:
Axiom $1$: Reflexivity Axiom for Equidistance
- $\forall a,b: ab \equiv ba$
where $a$ and $b$ are points.
This article, or a section of it, needs explaining. In particular: Why is it referred to as reflexivity but defined as symmetry? You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Axiom $2$: Transitivity Axiom for Equidistance
- $\forall a,b,p,q,r,s: \left({ab \equiv pq \land ab \equiv rs}\right) \implies pq \equiv rs$
where $a, b, p, q, r, s$ are points.
Axiom $3$: Identity Axiom for Equidistance
- $\forall a, b, c: ab \equiv cc \implies a = b$
where $a, b, c$ are points.
Axiom $4$: Axiom of Segment Construction
- $\forall a, b, c, q: \exists x: \mathsf{B} qax \land ax \equiv bc$
where $a, b, c, q, x$ are points.
Axiom $5$: Five-Segment Axiom
- $\forall a, b, c, d, a', b', c', d':$
- $\paren {\neg \paren {a = b} \land \paren {\mathsf B a b c \land \mathsf B a' b' c'} \land \paren {a b \equiv a' b' \land b c \equiv b' c' \land a d \equiv a' d' \land b d \equiv b' d'} }$
- $\implies c d \equiv c' d'$
where $a, b, c, d, a', b', c', d'$ are points.
Axiom $6$: Identity Axiom for Betweenness
- $\forall a,b: \mathsf{B}aba \implies a = b$
where $a$ and $b$ are points.
Axiom $7$: Pasch Axiom
- $\forall a, b, c, p, q: \exists x :\mathsf B a p c \land \mathsf B b q c \implies \mathsf B p x b \land \mathsf B q x a$
where $a, b, c, p, q, x$ are points.
Work In Progress In particular: Separate out Inner and Outer Forms of Pasch Axiom and link to them both You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by completing it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{WIP}} from the code. |
Axioms $8^{(0)}, 8^{(1)}, \ldots, 8^{(n)}$: Lower $n$-Dimensional Axioms
- $\exists a, b, c, p_1, \cdots, p_{n - 1}: \paren {\ds \bigwedge_{1 \mathop \le i \mathop < j \mathop < n} \map \neg {p_i = p_j} \land \bigwedge_{i \mathop = 2}^{n - 1} a p_1 \equiv a p_i \land \bigwedge_{i \mathop = 2}^{n - 1} b p_1 \equiv b p_i \land \bigwedge_{i \mathop = 2}^{n - 1} c p_1 \equiv c p_i}$
- $\land \paren {\neg \mathsf B abc \land \neg \mathsf B bca \land \neg \mathsf B cab}$
where:
- $a, b, c, p_i$ are points
- $\ds \bigwedge$ denotes the general conjunction operator.
Axioms $9^{(0)}, 9^{(1)}, \ldots, 9^{(n)}$: Upper $n$-Dimensional Axioms
- $\ds \forall a, b, c, p_1, \cdots, p_n: \paren {\bigwedge_{1 \mathop \le i \mathop < j \mathop \le n} \map \neg {p_i = p_j} \land \bigwedge_{i \mathop = 2}^n a p_1 \equiv a p_i \land \bigwedge_{i \mathop = 2}^n b p_1 \equiv b p_i \land \bigwedge_{i \mathop = 2}^n c p_1 \equiv cp_i}$
- $\implies \paren {\mathsf B abc \lor \mathsf B bca \lor \mathsf B cab}$
where:
- $a, b, c, p_i$ are points
- $\ds \bigwedge$ denotes the general conjunction operator.
Axiom $10$: Euclid's Axiom
- $\forall a, b, c, d, t: \exists x, y:$
- $\left({\mathsf{B}adt \land \mathsf{B}bdc \land \neg (a = d)}\right) \implies \left({\mathsf{B}abx \land \mathsf{B}acy \land \mathsf{B}xty}\right)$
where $a, b, c, d, t, x, y$ are points.
Axiom $11$: Axiom of Continuity
- $\left({\exists a : \forall x,y : \left({x \in X \land y \in Y}\right)\implies \mathsf{B}axy}\right) \implies \left({\exists b : \forall x,y : \left({x \in X \land y \in Y}\right)\implies \mathsf{B}xby}\right)$
where $a,b,x,y$ are points and $X, Y$ are point sets.
Axiom Schema $11$: Axiom Schema of Continuity
Axiom:Schema Axiom of Continuity
Axiom $12$: Reflexivity Axiom for Betweenness
- $\forall a, b: \mathsf{B}abb$
where $a$ and $b$ are points.
Axiom $13$ (unnamed)
- $\forall a,b: a = b \implies \mathsf{B}aba $
where $a$ and $b$ are points.
Axiom $14$: Symmetry Axiom for Betweenness
- $\forall a, b, c: \mathsf{B}abc \implies \mathsf{B}cba$
where $a, b, c$ are points.
Axiom $15$: Inner Transitivity Axiom for Betweenness
- $\forall a, b, c, d: \mathsf{B}abd \land \mathsf{B}bcd \implies \mathsf{B}abc$
where $a, b, c, d$ are points.
Axiom $16$: Outer Transitivity Axiom for Betweenness
- $\forall a, b, c, d: \mathsf{B}abc \land \mathsf{B}bcd \land \neg \paren {b = c} \implies \mathsf{B}abd$
where $a, b, c, d$ are points.
Axiom $17$: Inner Connectivity Axiom for Betweenness
- $\forall a,b,c,d: \left({\mathsf{B}abd \land \mathsf{B}acd}\right) \implies \left({\mathsf{B}abc \lor \mathsf{B}acb}\right)$
where $a, b, c, d$ are points.
Axiom $18$: Outer Connectivity Axiom for Betweenness
- $\forall a, b, c, d: \left({\mathsf{B}abc \land \mathsf{B}abd \land \neg \left({a = b}\right) }\right) \implies \left({\mathsf{B}acd \lor \mathsf{B}adc}\right)$
where $a, b, c, d$ are points.
Axiom $19$ (unnamed)
- $\forall a, b, c: a = b \implies ac \equiv bc$
where $a, b, c$ are points.
Axiom $20$: Uniqueness Axiom for Triangle Construction
- $\forall a, b, c, c', d:$
- $\paren {\neg \paren {a = b} \land ac \equiv ac' \land bc \equiv bc' \land \mathsf{B} bdc' \land \paren {\mathsf{B} adc \lor \mathsf{B} acd } }$
- $\implies c = c'$
where $a, b, c, c', d$ are points.
Axiom $21$: Existence Axiom for Triangle Construction
- $\forall a,a',b,b',c',p: ab \equiv a'b' \implies$
- $\exists c,x: \left({ac \equiv a'c' \land bc \equiv b'c' \land \mathsf{B}cxp}\right) \land \left({\mathsf{B}abx \lor \mathsf{B}bxa \lor \mathsf{B}xab}\right)$
where $a, b, c, a', b', c', x, p$ are points.
Axiom $22$: Density Axiom for Betweenness
- $\forall a, b: \exists c: \neg \left({a = b}\right) \implies \neg \left({c = a}\right)\land \neg \left({c = b}\right) \land \mathsf{B}acb$
where $a, b, c$ are points.
Axiom $23$ (unnamed)
- $\forall x,y,z,x',y',z' : \left({\mathsf{B}xyz \land \mathsf{B}x'y'z' \land xy \equiv x'y' \land yz \equiv y'z'}\right) \implies xz \equiv x'z'$
where $x, y, z, x', y', z'$ are points.
This article is incomplete. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by expanding it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Stub}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Source of Name
This entry was named for Alfred Tarski.
Sources
- June 1999: Alfred Tarski and Steven Givant: Tarski's System of Geometry (Bull. Symb. Log. Vol. 5, no. 2: pp. 175 – 214)